poj2992 阶乘分解
/*
将C(n,k)质因数分解,然后约束个数按公式计算
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long int v[],prime[],m,c[],p[];
void init(int n){
memset(prime,,sizeof prime);
memset(v,,sizeof v);
m=;
for(int i=;i<=n;i++){
if(v[i]==){
v[i]=i;
prime[++m]=i;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]*i>n) break;
v[i*prime[j]]=prime[j];
}
}
}
int cal(int p,int n){
int ret=,tmp=p;
while(tmp<=n){
ret+=n/tmp;
tmp*=p;
}
return ret;
} int main(){
int n,k;
init();
while(scanf("%d%d",&n,&k)==){
memset(c,,sizeof c);
memset(p,,sizeof p);
ll ans=;
for(int i=;i<=m;i++){
if(prime[i]>n) break;
c[i]+=cal(prime[i],n);
}
for(int i=;i<=m;i++){
if(prime[i]>n-k)break;
c[i]-=cal(prime[i],n-k);
}
for(int i=;i<=m;i++){
if(prime[i]>k) break;
c[i]-=cal(prime[i],k);
}
for(int i=;i<=m;i++)
if(c[i]) ans*=(c[i]+);
printf("%lld\n",ans);
}
}
poj2992 阶乘分解的更多相关文章
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子
http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...
- LightOJ - 1138 (二分+阶乘分解)
题意:求阶乘尾部有Q(1 ≤ Q ≤ 108)个0的最小N 分析:如果给出N,然后求N!尾部0的个数的话,直接对N除5分解即可(因为尾部0肯定是由5*2构成,那么而在阶乘种,2的因子个数要比5少,所以 ...
- Acwing 197. 阶乘分解
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- CH 3101 - 阶乘分解 - [埃筛]
题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就 ...
- CH3101 阶乘分解
题目链接 分解\(n!\)的质因数,输出相应的\(p_i\)和\(c_i\). 其中\(1\leq n\leq 10^6\). 考虑每一个质因子 \(p\) 在 \(n!\) 中出现的次数.显然, ...
随机推荐
- 4、JDBC-API
访问数据库 /** * 在 java.sql 包中有 3 个接口分别定义了对数据库的调用的不同方式: * * Statement * * PrepatedStatement * * CallableS ...
- mysql用户权限分配专栏
00x1创建新用户 通过root用户登录之后创建 创建新用户,用户名为testuser,密码为123456 : 1 grant all privileges on *.* to testuser@lo ...
- linux的基本操作与常见命令
linux的基本操作与常见命令: jdk的安装: 步骤:(特别注意:虚拟机安装的一般是32位的操作系统,jdk也必须使用32位的) 查看虚拟机版本:sudo uname --m i686 //表示是3 ...
- 海明码 CRC冗余校验码
海明码(也叫汉明码)具有一位纠错能力.本文以1010110这个二进制数为例解释海明码的编码和校验方法 确定校验码的位数x 设数据有n位,校验码有x位.则校验码一共有2x种取值方式.其中需要一种取值方式 ...
- 键盘按键js效果
<input id="name" type="text" > JS: <script> document.onkeydown = fun ...
- luogu P2508 [HAOI2008]圆上的整点
传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...
- JS堆栈与拷贝
一.堆栈的定义 1.栈是一种特殊的线性表.其特殊性在于限定插入和删除数据元素的操作只能在线性表的一端进行. 结论:后进先出(Last In First Out),简称为LIFO线性表.栈的应用有:数制 ...
- B. Array
题目链接:http://codeforces.com/contest/224/problem/B 具体大意: 输入n,m. 给你一个区间,让你找某一段区间中包含m个不同的数,并且这段区间中的某一个小区 ...
- Handler使用中可能引发的内存泄漏
https://my.oschina.net/rengwuxian/blog/181449 http://www.jianshu.com/p/cb9b4b71a820 http://blog.csdn ...
- 【tomcat】sessionId学习(未完待续)
这里主要研究tomcat中session的管理方式以及sessionId的原理,下文将研究sessionid存到redis中以及基于redis实现session共享. 平时也就是了解session是基 ...