题意:

一个完全图,有n个点,其中m条边是权值为a的无向边,其它是权值为b的无向边,问从1到n的最短路。

思路:

首先判断1和n被哪种边连通。

如果是被a连通,那么就需要全部走b的边到达n,选择最小的;

被b连通,需要走全部为a的边到达n,选择最小的。

第二种情况,用输入的边跑dijkstra;

但是第一种情况边太多,所以并不能单纯的用最短路。

可以想到的是,对于第二种情况,一个点只会经过一次。

所以用一个set来存还未访问过的点,进行bfs。

每次从队列中取出一个点x,把set中与x以a边相连的点暂时去掉,那么此时set中就是与x以b边相连并且还未访问的点了,这个时候就可以进行松弛了。

之后再对set进行更新,使其为还未访问到的点。

又犯了这个睿智错误,数据还没输入就进行处理了,真是睿智。

自定义的比较宏比algor里面得到快很多啊。

代码:

 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <set>
#include <queue>
#define mi(x,y) (x) > (y) ? (y) : (x)
using namespace std;
typedef long long ll;
const int N = 1e5 + ;
struct node
{
int to,cost;
node (int a,int b):to(a),cost(b){};
node(){};
};
struct js
{
int x;
ll d;
js(int a,ll b):x(a),d(b){};
js(){};
bool operator < (const js& y) const
{
return y.d < d;
}
};
vector<node> g[N];
int n,m,a,b;
ll dis[N];
void dij(void)
{
for (int i = ;i <= n;i++) dis[i] = 1e18;
dis[] = ;
priority_queue<js> pq;
pq.push(js(,));
while (!pq.empty())
{
js t = pq.top();pq.pop();
if (t.d > dis[t.x]) continue;
int x = t.x;
for (auto v:g[x])
{
if (dis[v.to] > dis[x] + v.cost)
{
dis[v.to] = dis[x] + v.cost;
pq.push(js(v.to,dis[v.to]));
}
}
}
}
void bfs(void)
{
set<int> s,t;
for (int i = ;i <= n;i++) s.insert(i);
queue<int> q;
q.push();
while (!q.empty())
{
int x = q.front();q.pop();
if (x == n) break;
for (auto v:g[x])
{
if (s.count(v.to) == ) continue;
s.erase(v.to);
t.insert(v.to);
}
for (auto y:s)
{
dis[y] = dis[x] + b;
q.push(y);
}
s.swap(t);
t.clear();
}
}
int main()
{
while (scanf("%d%d%d%d",&n,&m,&a,&b) != EOF)
{
for (int i = ;i <= n;i++)
{
g[i].clear();
}
bool f = ;
for (int i = ;i < m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if (x > y) swap(x,y);
g[x].push_back(node(y,a));
g[y].push_back(node(x,a));
if (x == && y == n) f = ;
}
ll ans;
if (f)
{
bfs();
ans = mi((ll)a,dis[n]);
}
else
{
dij();
ans = mi((ll)b,dis[n]);
}
printf("%lld\n",ans);
}
return ;
}

scu 4444 Travel的更多相关文章

  1. SCU 4444: Travel(最短路)

    Travel The country frog lives in has n towns which are conveniently numbered by 1,2,…,n . Among n(n− ...

  2. SCU 4444 Travel (补图最短路)

    Travel The country frog lives in has \(n\) towns which are conveniently numbered by \(1, 2, \dots, n ...

  3. 第十五届四川省省赛 SCU - 4444 Travel

    给你一个一共由两种边的完全图 要求你求1到N的最短路 q队列为前沿队列(已探索过且最外围的点)  p队列为未探索队列(未探索过的点) depth这个数组的用法并不是代表实际上这个点在第几层 而是防止死 ...

  4. SCU Travel

    Travel The country frog lives in has n towns which are conveniently numbered by 1,2,…,n . Among n(n− ...

  5. POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / SCU 1132 Invitation Cards / ZOJ 2008 Invitation Cards / HDU 1535 (图论,最短路径)

    POJ 1511 Invitation Cards / UVA 721 Invitation Cards / SPOJ Invitation / UVAlive Invitation Cards / ...

  6. 图论 - Travel

    Travel The country frog lives in has nn towns which are conveniently numbered by 1,2,…,n. Among n(n− ...

  7. ACM:SCU 4437 Carries - 水题

    SCU 4437  Carries Time Limit:0MS     Memory Limit:0KB     64bit IO Format:%lld & %llu  Practice  ...

  8. ACM: SCU 4438 Censor - KMP

     SCU 4438 Censor Time Limit:0MS     Memory Limit:0KB     64bit IO Format:%lld & %llu  Practice D ...

  9. ACM: SCU 4440 Rectangle - 暴力

     SCU 4440 Rectangle Time Limit:0MS     Memory Limit:0KB     64bit IO Format:%lld & %llu  Practic ...

随机推荐

  1. 添加linux系统调用的两种方式

    原文:https://blog.csdn.net/sdulibh/article/details/51889279 向linux内核添加系统调用,一是通过编译内核添加,二是通过内核模块的方式添加: 一 ...

  2. P3292 [SCOI2016]幸运数字 线性基

    正解:线性基+倍增 解题报告: 先放下传送门QAQ 然后这题,其实没什么太大的技术含量,,,?就几个知识点套在一起,除了代码长以外没任何意义,主要因为想复习下线性基的题目所以还是写下,,, 随便写下思 ...

  3. 关于linux特殊含义的转义符\033

    格式: echo -e "\033[字背景颜色;字体颜色m字符串\033[0m" 例如: echo -e "\033[41;36m something here \033 ...

  4. iframe 和 父窗口传递

    iframe 向父窗口 window.parent.postMessage('向父窗口传递值',*); 父窗口向 iframe 内部子窗口传值 documnet.querySelector('ifra ...

  5. Log4j rootLogger配置

    Log4j 根配置语法 log4j.rootLogger = [ level ] , appenderName, appenderName, … 指代 把指定级别的日志信息输出到指定的一个或者多个位置 ...

  6. Innodb semi-consistent 简介

    A type of read operation used for UPDATE statements, that is a combination of read committed and con ...

  7. Android Studio安装配置

    1.首先我们进官网 http://www.android-studio.org/  (注意一下除了SDK外还需要JDK) 2.选择历史版本下载 3.随意选择版本这里笔者选用1.2.1版本,主要下带bu ...

  8. (4.22)Microsoft 管理控制台启用 SSL 加密的 SQL Server 实例

    如何通过使用 Microsoft 管理控制台启用 SSL 加密的 SQL Server 实例 关键词:MSSQL加密,sql server加密,sql server客户端与服务器传输内容加密 转自:h ...

  9. VS2008生成数据库连接字串

    在写WEB程序的时候~通常需要在Web.config文件的<connectionStrings>节点上写数据库的链接字符串,因为是一串字符代码我们常常需要写在固定的文本里便于下次使用,其实 ...

  10. ES7 async 函数

    async 函数 let getdata=function(){ return new Promise((resolve,reject)=>{ resolve('aaa'); }) } let ...