1.启动

  启动HDFS

  启动spark的local模式./spark-shell

2.知识点

 textFile:

  def textFile(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[String]

 Filter: 

  Return a new RDD containing only the elements that satisfy a predicate.

  def filter(f: T => Boolean): RDD[T],返回里面判断是true的RDD。

 map:

  Return a new RDD by applying a function to all elements of this RDD.
 def map[U: ClassTag](f: T => U): RDD[U],从T到U类型的一个数据转换函数,最终返回的RDD中的数据类型是f函数返回的数据类型

 flatMap:

    Return a new RDD by first applying a function to all elements of this
RDD, and then flattening the results.
    def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
  从T到集合类型的数据类型转换,集合中的数据类型是U,最终返回的RDD数据类型是f函数返回的集合中的具体的类型数据。 3.编写基础的wordcount程序
 //读取文件
val rdd=sc.textFile("wc/input/wc.input")
//过滤数据
val filterRdd=rdd.filter(len=>len.length>0)
//数据转换
val flatMapRdd=filterRdd.flatMap(line=>line.split(" ")
.map(word=>(word,1)))
//分组
val groupByRdd=flatMapRdd.groupBy(tuple=>tuple._1)
//聚合
val wordCount=groupByRdd.map(tuple=>{
val word=tuple._1
val sum=tuple._2.toList.foldLeft(0)((a,b)=>a+b._2)
(word,sum)
})
//输出
wordCount.foreach(println) //控制台上的输出
wordCount.saveAsTextFile("wc/output6") //HDFS上的输出

4.简化代码(链式编程)

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>0).
//数据转换
flatMap(_.split(" ").map((_,1))).
//分组
groupByKey().
//统计
map(tuple=>(tuple._1,tuple._2.toList.sum)).
//输出
saveAsTextFile("wc/output7")

5.最优化程序

  reduceByKey存在combiner。

  groupBy在大数据量的情况下,会出现OOM

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>0).
//数据转换
flatMap(_.split(" ").map((_,1))).
//统计
reduceByKey(_+_).
//输出
saveAsTextFile("wc/output8")

6.显示结果

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>).
//数据转换
flatMap(_.split(" ").map((_,))).
//统计
reduceByKey(_+_).
collect()

7.排序(第二个数,从大到小)

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>).
//数据转换
flatMap(_.split(" ").map((_,))).
//统计
reduceByKey(_+_).
//排序
sortBy(tuple=>tuple._2,ascending=false).
collect()

8.TopK(方式一)

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>).
//数据转换
flatMap(_.split(" ").map((_,))).
//统计
reduceByKey(_+_).
//排序
sortBy(tuple=>tuple._2,ascending=false).
take()

9.TopK(方式二,自定义)

 sc.textFile("wc/input/wc.input").
//数据过滤
filter(_.length>).
//数据转换
flatMap(_.split(" ").map((_,))).
//统计
reduceByKey(_+_).
//排序
sortBy(tuple=>tuple._2,ascending=false).
top()(new scala.math.Ordering[(String,Int)](){
override def compare(x:(String,Int),y:(String,Int))={
val tmp=x._2.compare(y._2)
if(tmp!=) tmp
else x._1.compare(x._1)
}
})

006 Spark中的wordcount以及TopK的程序编写的更多相关文章

  1. Spark中的Wordcount

    目录 通过scala语言基于local编写spark的Wordcount 基于yarn去调度WordCount 通过scala语言基于local编写spark的Wordcount import org ...

  2. Spark中的wordCount程序实现

    import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.s ...

  3. spark 中的RDD编程 -以下基于Java api

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  4. 大话Spark(3)-一图深入理解WordCount程序在Spark中的执行过程

    本文以WordCount为例, 画图说明spark程序的执行过程 WordCount就是统计一段数据中每个单词出现的次数, 例如hello spark hello you 这段文本中hello出现2次 ...

  5. Spark初步 从wordcount开始

    Spark初步-从wordcount开始 spark中自带的example,有一个wordcount例子,我们逐步分析wordcount代码,开始我们的spark之旅. 准备工作 把README.md ...

  6. 【Spark篇】---Spark中Shuffle机制,SparkShuffle和SortShuffle

    一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有val ...

  7. 020 Spark中分组后的TopN,以及Spark的优化(重点)

    一:准备 1.源数据 2.上传数据 二:TopN程序编码 1.程序 package com.ibeifeng.bigdata.spark.core import java.util.concurren ...

  8. intellij-idea打包Scala代码在spark中运行

    .创建好Maven项目之后(记得添加Scala框架到该项目),修改pom.xml文件,添加如下内容: <properties> <spark.version></spar ...

  9. spark中的RDD以及DAG

    今天,我们就先聊一下spark中的DAG以及RDD的相关的内容 1.DAG:有向无环图:有方向,无闭环,代表着数据的流向,这个DAG的边界则是Action方法的执行 2.如何将DAG切分stage,s ...

随机推荐

  1. yolov3实践(二)

    这次给大家带来一个有趣的项目,项目主要是Python写的,基于Keras,backend是tf. 首先,当我们回顾视觉目标检测这个任务时,我们可能纠结于如何使这个项目变得更加work,我理解的更加wo ...

  2. UDP网络程序,客户端和服务端交互原理

    创建一个udp客户端程序的流程是简单,具体步骤如下: 创建客户端套接字 发送/接收数据 关闭套接字 UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实 ...

  3. Maven聚合工程的使用

    创建一个service模块 接下来,在该项目中创建一个接口 创建一个实现类,并实现接口 在sm1234-web项目中,调用service的方法,需要在该项目的pom.xml中引入依赖Service模块 ...

  4. Android BroadcastReceiver解析

    目录   示意图 1. 定义 即 广播,是一个全局的监听器,属于Android四大组件之一 Android 广播分为两个角色:广播发送者.广播接收者 2. 作用 监听 / 接收 应用 App 发出的广 ...

  5. Linux搜索查找类指令

    ⒈find [搜索范围] [选项] find指令将从指定目录下递归的遍历其各个子目录,将满足条件的文件或者目录显示在终端 选项说明: 选项 功能 -name<查询方式> 按照指定的文件名查 ...

  6. EXT3.3.1在IE9 IE10click事件 失效怎么解决

    各位Ext君有福了. var treePanel = new Ext.tree.TreePanel({ id:'treePanel_'+(menuIndex++),//让菜单id可控 title: t ...

  7. Linux inotify功能及实现原理【转】

    转自:http://blog.csdn.net/myarrow/article/details/7096460 1. inotify主要功能 它是一个内核用于通知用户空间程序文件系统变化的机制. 众所 ...

  8. High level GPU programming in C++

    https://github.com/prem30488/C2CUDATranslator http://www.training.prace-ri.eu/uploads/tx_pracetmo/GP ...

  9. c# webbrowser控件内核版本强制修改

    int BrowserVer, RegVal; // get the installed IE version using (WebBrowser Wb = new WebBrowser()) Bro ...

  10. dubbo系列六、SPI扩展Filter隐式传参

    一.实现Filter接口 1.消费者过滤器:ConsumerTraceFilter.java package com.dubbo.demo.Filter; import com.alibaba.dub ...