题意1:问你一个串有几个不连续子序列(相同字母不同位置视为两个)

题意2:问你一个串有几种不连续子序列(相同字母不同位置视为一个,空串视为一个子序列)

思路1:由容斥可知当两个边界字母相同时 dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1] + dp[i + 1][j - 1] + 1;当两个字母不同时 dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1]。然后区间DP即可

思路2:由思路1我们能大致知道怎么做,显然两边界字母不一样时情况是一样的。当两边字母一样时,那么就要判断中间的重复情况。

我们设l和r,表示i + 1 ~ j - 1里最左边的s[i]字母和最右边的s[i]字母

当 l == r 那么就只有一个相同字母,dp[i][j] = dp[i + 1][j - 1] + dp[i + 1][j - 1] + 1,答案为中间部分 + 中间加上两边界 + s[i]s[j]串

当 l > r,没有这个字母,dp[i][j] = dp[i + 1][j - 1] + dp[i + 1][j - 1] + 2,答案为中间部分 + 中间加上两边界 + s[i]s[j]串 + s[i]

当l < r,说明至少有两个字母,dp[i][j] = dp[i + 1][j - 1] + dp[i + 1][j - 1] - dp[l + 1][r - 1],答案为中间部分 + 中间加上两边界 - (l,r)区间内种数,因为这里面的和s[l],s[r]组成的串和s[i],s[j]重复

代码1:

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e3 + ;
const ll MOD = 1e4 + ;
const int INF = 0x3f3f3f3f;
int dp[maxn][maxn]; //i到j种数
char s[maxn];
int main(){
int t, ca = ;
scanf("%d", &t);
while(t--){
scanf("%s", s + );
int n = strlen(s + );
for(int i = ; i <= n; i++){
dp[i][i] = ;
}
for(int len = ; len <= n; len++){
for(int i = ; i + len - <= n; i++){
int j = i + len - ;
if(s[i] == s[j]){
dp[i][j] = dp[i + ][j] + dp[i][j - ] + ;
}
else{
dp[i][j] = dp[i + ][j] + dp[i][j - ] - dp[i + ][j - ];
}
dp[i][j] = (dp[i][j] + MOD) % MOD;
}
}
printf("Case %d: %d\n", ca++, dp[][n]);
}
return ;
}

代码2:

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e3 + ;
const ll MOD = 1e9 + ;
const int INF = 0x3f3f3f3f;
ll dp[maxn][maxn]; //i到j种数
char s[maxn];
int main(){
int t, ca = , n;
scanf("%d", &t);
while(t--){
scanf("%s", s + );
int n = strlen(s + );
for(int i = ; i <= n; i++){
dp[i][i] = ;
}
for(int len = ; len <= n; len++){
for(int i = ; i + len - <= n; i++){
int j = i + len - ;
if(s[i] == s[j]){
int l = i + , r = j - ;
while(s[l] != s[i] && l <= r) l++;
while(s[r] != s[i] && l <= r) r--;
if(l > r){
dp[i][j] = dp[i + ][j - ] + dp[i + ][j - ] + ;
}
else if(l == r){
dp[i][j] = dp[i + ][j - ] + dp[i + ][j - ] + ;
}
else{
dp[i][j] = dp[i + ][j - ] + dp[i + ][j - ] - dp[l + ][r - ];
}
}
else{
dp[i][j] = dp[i + ][j] + dp[i][j - ] - dp[i + ][j - ];
}
}
}
printf("Case %d: %lld\n", ca++, dp[][n]);
}
return ;
}

HDU 4632 Palindrome subsequence & FJUT3681 回文子序列种类数(回文子序列个数/回文子序列种数 容斥 + 区间DP)题解的更多相关文章

  1. HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)

    题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...

  2. HDU 4632 Palindrome subsequence (区间DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  3. HDU 4632 Palindrome subsequence (区间DP)

    题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序 ...

  4. HDU 4632 Palindrome subsequence (2013多校4 1001 DP)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  5. HDU 4632 Palindrome subsequence(区间dp)

    Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/ ...

  6. HDU 4632 Palindrome subsequence(区间DP求回文子序列数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题目大意:给你若干个字符串,回答每个字符串有多少个回文子序列(可以不连续的子串).解题思路: 设 ...

  7. hdu 4632 Palindrome subsequence

    http://acm.hdu.edu.cn/showproblem.php?pid=4632 简单DP 代码: #include<iostream> #include<cstdio& ...

  8. HDU 4632 Palindrome subsequence(DP)

    题目链接 做的我很无奈,当时思路很乱,慌乱之中,起了一个想法,可以做,但是需要优化.尼玛,思路跑偏了,自己挖个坑,封榜之后,才从坑里出来,过的队那么多,开始的时候过的那么快,应该就不是用这种扯淡方法做 ...

  9. 【HDU】4632 Palindrome subsequence(回文子串的个数)

    思路:设dp[i][j] 为i到j内回文子串的个数.先枚举所有字符串区间.再依据容斥原理. 那么状态转移方程为   dp[i][j] = dp[i][j-1] + dp[i+1][j] - dp[i+ ...

随机推荐

  1. 如何注销Sitecore CMS

    登录Sitecore很容易,但是在旧版本的Sitecore中使用不同的界面,退出可能会给未经证实的人带来挑战. Sitecore 8 Sitecore 6和7 Sitecore 8 Sitecore ...

  2. sitecore系列教程之Sitecore个性化-体验概况概述

    SITECORE 8:体验概况概述 什么是体验简介? 体验配置文件是Sitecore中的仪表板应用程序,它说明了客户体验和交互的关键区域,例如访问者详细信息,访问,活动,目标,配置文件,自动化等等. ...

  3. Abandoned country(最小生成树+树形DP)

    #include<bits/stdc++.h> using namespace std; struct node{ int u, v, w, nex; bool gone; node(){ ...

  4. 【Hadoop学习之八】MapReduce开发

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 伪分布式:HDFS和YARN 伪分 ...

  5. 【安装虚拟机三】设置Linux IP地址

    环境 VMware 10 CentOS-6.5-x86_64 第一步:查看IP信息linux:ifconfig (windows:ipconfig) 第二步:编辑网卡信息 vi /etc/syscon ...

  6. python pandas简单使用处理csv文件

    这里jira.csv是个大文件 1) >>> import pandas >>> jir=pandas.read_csv(r'C:\Temp\jira.csv') ...

  7. 20165215 2017-2018-2《Java程序设计》第一周学习总结

    20165215 2017-2018-2 <Java程序设计>第一周学习总结 教材学习内容总结 跟随网课学习了<Java2 实用教程>的第一章,进行了基础的编译练习 在Ubun ...

  8. 特定条件下批量解压文件改变编码,顺便修改.so.0找不到等一些小问题

    直接结论: 1.linux解压文件乱码: unzip -O GBK *.zip 2.linux改变文件内容编码: 安装enca,下载地址:https://github.com/nijel/enca/i ...

  9. window、linux安装jdk,excel 导入oracle,WebService,window 端口查看,svn服务安装,oracle用户解锁

    内存泄露分析插件http://download.eclipse.org/mat/1.3/update-site/birt插件http://download.eclipse.org//birt/upda ...

  10. <转>jmeter(三)SOAP/XML-RPC Request

    本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...