Codeforces 223C Partial Sums 数论+组合数学
题意非常easy,求不是那么好求的,k非常大 要操作非常多次,所以不可能直接来的。印象中解决操作比較多无非线段树 循环节 矩阵 组合数等等吧,这道题目 也就仅仅能多画画什么 的了
就以第一个案例为主吧 。
3
1 2 3
k我们根据画的次数来自己定好了
以下的每一个数表示这个位置的 数由最初的 数组num[]中多少个数加起来得到的
当k为0的时候呢。就是
1 1 1
k为1的时候呢
1 2 3
k为2的时候呢
1 3 6
那么k为3的时候
1 4 10
这里看一下 从数组下标0開始。那么事实上就是 C(i + k,i)
认为不够的话呢 能够再多写几个,发现就是这么回事啊 。跟组合数有联系了,那么肯定不可能每一次都求啊 ,所以能够试着搞一个矩阵,这样就能够做了
做的时候组合数直接来超时了,能够先用一个c数组预处理出全部的组合数答案,求答案运用C(n,m) == C(n,n - m)这样省时间这样也是700+ms比較慢,当然若是再把乘法逆元给 先预处理存到数组里会更加省时间 并且会省非常多。
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long #define eps 1e-8 const int inf = 0xfffffff; const ll INF = 1ll<<61; using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p; #define MOD 1000000007 ll num[2000 + 5]; int n,k; ll exgcd(ll a, ll b, ll &x, ll &y) {
if(!b) {
x = 1; y = 0;
return a;
}
ll r = exgcd(b, a%b, y, x);
y -= a/b*x;
return r;
} ll inv(ll a, ll m)
{
ll x,y,gcd = exgcd(a, m, x, y);
if(x < 0)
x += m;
return x;
} ll C(ll n,ll m) {
ll ans = 1;
for(int i=1;i<=m;i++)
ans = ((ans * inv(i,MOD))%MOD * (n - i + 1))%MOD;
return ans;
} ll c[2000 + 5]; int main() {
while(scanf("%d %d",&n,&k) == 2) {
for(int i=0;i<n;i++)
scanf("%d",&num[i]);
if(k == 0) {
for(int i=0;i<n;i++)
printf("%I64d%c",num[i],i == n - 1? '\n':' ');
continue;
}
for(int i=0;i<n;i++)
c[i] = C(i + k - 1,i);
for(int i=0;i<n;i++) {
ll ans = 0ll;
for(int j=0;j<=i;j++) {
//ll tmp = C(i - j + k - 1,i - j);
//ll tt = num[j];
ans = (ans + num[j] * c[i - j])%MOD;
}
printf("%I64d%c",ans,i == n - 1? '\n':' ');
}
}
return 0;
}
Codeforces 223C Partial Sums 数论+组合数学的更多相关文章
- CodeForces 223C Partial Sums 多次前缀和
Partial Sums 题解: 一个数列多次前缀和之后, 对于第i个数来说他的答案就是 ; i <= n; ++i){ ; j <= i; ++j){ b[i] = (b[i] + 1l ...
- CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)
ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to ...
- 51nod1161 Partial Sums
开始想的是O(n2logk)的算法但是显然会tle.看了解题报告然后就打表找起规律来.嘛是组合数嘛.时间复杂度是O(nlogn+n2)的 #include<cstdio> #include ...
- 51 Nod 1161 Partial sums
1161 Partial Sums 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 取消关注 给出一个数组A,经过一次 ...
- [codeforces 509]C. Sums of Digits
[codeforces 509]C. Sums of Digits 试题描述 Vasya had a strictly increasing sequence of positive integers ...
- Non-negative Partial Sums(单调队列)
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- hdu 4193 Non-negative Partial Sums 单调队列。
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- TOJ 1721 Partial Sums
Description Given a series of n numbers a1, a2, ..., an, the partial sum of the numbers is defined a ...
- 【计数】cf223C. Partial Sums
考试时候遇到这种题只会找规律 You've got an array a, consisting of n integers. The array elements are indexed from ...
随机推荐
- 【HDOJ5538】House Building(计算几何)
题意:给定一个n*m的方阵,第i行第j列的高度为a[i][j],问除了下底面之外其余五面的总表面积 n<=50,0<=a[i][j]<=1000 思路:队友写的,抱大腿 考虑当前方格 ...
- 【shell】Shell命令合集(0)
Ccat zdd 浏览文件zdd的内容cat zdd1 zdd2 浏览多个文件的内容cat -n zdd浏览文件zdd的内容并显示行号 cd 回到起始目录,也即刚登陆到系统的目录,cd后面无参数cd ...
- hdu 2147 kiki's game 组合游戏 找规律
题目链接 题意 两人轮流将硬币从\((n,m)\)移动到\((1,1)\),每次只能向下或向左或向左下移动一格,最后无法移动者输.问先手会赢还是会输. 思路 找规律 -- P N P N P N P ...
- luogu 1969 积木大赛
题目链接 题意 初始序列为全\(0\),可以对序列进行的操作为将\([l,r]\)整体\(+1\),问操作多少次后可以得到序列\(a\). 思路 显然,最优的策略即是先找到整个序列的最小值,整体加上这 ...
- 编译程序加不加 -lpthread 的区别【转】
转自:http://www.cnblogs.com/Swartz/articles/3939382.html 作者:Lokki 出处:http://www.cnblogs.com/Swartz/ 欢迎 ...
- linux内核情景分析之匿名管道
管道的机制由pipe()创建,由pipe()所建立的管道两端都在同一进程.所以必须在fork的配合下,才可以在具有亲缘关系的进程通信 /* * sys_pipe() is the normal C c ...
- ubuntu 12.04LTS下搭建Andriod开发环境记录
今天在Ubuntu 12.04 LTS 下安装了android开发环境. 1, 安装JDK 先去 Oracle下载Linux下的JDK压缩包,我下载的是jdk-7u4-linux-i586.tar.g ...
- 网络编程socket-SocketServer-FTP
16章 网络编程?应该是讲网络之间如何编程来进行通信的章节 16.1.1 客户端/服务器架构?客户端请求访问,服务器端监听请求,处理请求,进行相应的模式16.1.2 客户端/服务器编程?服务器端:创建 ...
- H5页面唤起手机号
做手机H5页面的时候经常会碰到在某一个页面会显示一个手机号,坑爹的产品会说你点击一下能不能让手机弹出号码,然后拨打出去,我试了试各种百度来的方法都是失败的,比如下面的这个: <a href=&q ...
- 洛谷——P1306 斐波那契公约数
P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输 ...