http://codeforces.com/problemset/problem/123/E

题目翻译:(翻译来自: http://www.cogs.pw/cogs/problem/problem.php?pid=1734

一个迷宫是一棵树(即一张无向图,其中任意两点之间仅有一条路径)。迷宫的起点和终点都按照某种概率随机选取。人们会在迷宫中用深度优先搜索的方法搜寻终点。如果有许多条可能的路径,会等概率地选取一条。考虑如下伪代码:

DFS(x)

if x == exit vertex then

finish search

flag[x] <- TRUE

random shuffle the vertices' order in V(x) // here all permutations have equal probability to be chosen

for i <- 1 to length[V] do

if flag[V[i]] = FALSE then

count++;

DFS(y);

count++;

V(x)是和x相邻的顶点列表。最初flag数组的值均为false。第一次DFS的参数是迷宫的入口节点。当搜索终止,变量count的值就是在迷宫中走的步数。

你的任务是计算在迷宫中从入口到出口,所走的期望步数。

题解:

首先一看知道题就知道应该去求每个点对答案的贡献

现在考虑如何求出这个贡献。

我们发现如果我们单独枚举一个点,那么这个点的情况一共有三种:

1.必定被经过 

2.必定不被经过

3.不一定被经过

这样就不好统计了,所以我们先转换一下思维

怎样才能准确的找出经过的路径? 最直接的方法就是暴力枚举所有的起点和终点

这样路径就唯一确定了,直接在这个图中求一边期望,然后加权求和

可是 n <= 10^5,暴力肯定无法通过,但是有值得我们借鉴的思维

枚举端点

我们可以枚举终点,这样情况就分成了。。。还是三种:

1.起点就是终点,贡献为0,该情况可以忽略

2.起点在以终点为根的子树中

3.起点不在以终点为根的子树中

对于第二种情况,我们可以直接计算贡献,即(子树的节点数目*子树中有一个点作为入口的概率)

对于第三种情况,我们也可以直接计算的,即(除去子树后树的节点数目*除去子树后树中存在入口的概率)

为什么能这么计算呢?

我们考虑一下,如果根的某一个儿子是入口,那么贡献应为0.5*siz[v]*2

我们发现,如果一条路径经过n个点两次后到达出口,那么对答案的贡献即为(n<<1)

我们可以这么想,把题目中给的伪代码改动一下,那么每次到达一个点++count,退出一个点++count

最后再--count,这样就是这条路径对答案的贡献。

所以,我们直接刨去到达终点时对答案做出的贡献,那么就可以得到刚才的式子了

我们考虑进行推广,发现所有的点都满足这个式子

所以我们可以直接对若干个点直接加和,那么就是上面提到的计算方式了

O(n)

Code

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=*x+ch-'',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = ;
struct Edge{
int to,next;
}G[maxn<<];
int head[maxn],cnt;
void add(int u,int v){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
}
int siz[maxn],ex[maxn],en[maxn];
int fa[maxn],n;
ll sn=,sx=,ans = ;
#define v G[i].to
void dfs(int u){
siz[u] = ;
for(int i = head[u];i;i=G[i].next){
if(v == fa[u]) continue;
fa[v] = u;
dfs(v);
siz[u] += siz[v];
en[u] += en[v];
ans += 1LL*ex[u]*en[v]*siz[v];
}ans += 1LL*ex[u]*(sn - en[u])*(n - siz[u]);
}
#undef v
int main(){
read(n);
for(int i=,u,v;i<n;++i){
read(u);read(v);
add(u,v);add(v,u);
}
for(int i=;i<=n;++i){
read(en[i]),read(ex[i]);
sn += en[i];sx += ex[i];
}dfs();
printf("%.60lf\n",(double)ans/(1.0*sn*sx) );
getchar();getchar();
return ;
}

CodeForces - 123E Maze的更多相关文章

  1. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  2. Codeforces 377A - Maze

    A. Maze 题目链接:http://codeforces.com/contest/377/problem/A time limit per test 2 seconds memory limit ...

  3. CodeForces - 377A Maze BFS逆思维

    Maze Pavel loves grid mazes. A grid maze is an n × m rectangle maze where each cell is either empty, ...

  4. CodeForces 378C Maze (DFS)

    题目链接 题意:给一个由“.”组成的联通区域,求再添加k个‘#'以后还是联通区域的方案. 分析:做题的时候犯二了,用DFS,一直搜到边缘,然后从边缘依次往回 回溯,回溯的过程中填充’#‘ 一直填充k个 ...

  5. Codeforces 404E: Maze 1D(二分)

    题意:指令“R”机器人会向右走一步,“L”是向左.起初机器人在0位置,可以在除了0以外的任何位置放障碍,如果机器人的指令将使它走到障碍上,那这一步他会保持不动.要求让机器人最终结束的那一步一定只走过一 ...

  6. Codeforces Round #222 (Div. 1) A. Maze dfs

    A. Maze 题目连接: http://codeforces.com/contest/377/problem/A Description Pavel loves grid mazes. A grid ...

  7. Codeforces Round #222 (Div. 1) Maze —— dfs(连通块)

    题目链接:http://codeforces.com/problemset/problem/377/A 题解: 有tot个空格(输入时统计),把其中k个空格变为wall,问怎么变才能使得剩下的空格依然 ...

  8. [CodeForces - 197D] D - Infinite Maze

    D - Infinite Maze We've got a rectangular n × m-cell maze. Each cell is either passable, or is a wal ...

  9. Codeforces 197D - Infinite Maze

    197D - Infinite Maze 思路:bfs,如果一个点被搜到第二次,那么就是符合要求的. 用vis[i][j].x,vis[i][j].y表示i,j(i,j是取模过后的值)这个点第一次被搜 ...

随机推荐

  1. MFC——9.多线程与线程同步

    Lesson9:多线程与线程同步 程序.进程和线程是操作系统的重点,在计算机编程中.多线程技术是提高程序性能的重要手段. 本文主要解说操作系统中程序.进程和线程之间的关系,并通过相互排斥对象和事件对象 ...

  2. An easy to use android color picker library

    https://github.com/xdtianyu/ColorPicker

  3. Anaconda装OpenCV

     感谢来源: http://blog.csdn.net/fairylrt/article/details/43560525 前两天看到段子说开源软件就是各种配置,这是一件很辛苦的事情. Anacond ...

  4. WCF: 以Json格式返回对象

    1.先建一个WCF Service 建一个ServiceContract接口 1 [ServiceContract] public interface IJsonWCFService { /// &l ...

  5. AOS应用基础平台-模块开发流程

    AOS平台简单介绍 AOS应用基础平台基于JavaEE技术体系,以"标准功能可复用.通用模块可配置.行业需求高速开发.异构系统无缝集成"为目标.为软件开发团队提供高效可控.随需应变 ...

  6. MySQL中使用INNER JOIN来实现Intersect并集操作

    MySQL中使用INNER JOIN来实现Intersect并集操作 一.业务背景 我们有张表设计例如以下: CREATE TABLE `user_defined_value` ( `RESOURCE ...

  7. java 邮件(2)

    /**  * 方法描述:发送带附件的邮件  *   * @throws UnsupportedEncodingException  */  public static boolean sendEmai ...

  8. ios中实现对UItextField,UITextView等输入框的字数限制

    本文转载至 http://blog.sina.com.cn/s/blog_9bf272cf01013lsd.html 2011-10-05 16:48 533人阅读 评论(0) 收藏 举报 1.    ...

  9. Devexpress Spreadsheet 中文教程

    http://blog.csdn.net/hotmee/article/details/50554381

  10. 十分钟git-服务器搭建ssh登陆

    QQ820688215 微信公众号: 1首先,创建一个操作系统用户 git,并为其建立一个 .ssh 目录. $ sudo adduser git $ su git $ cd $ mkdir .ssh ...