这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。

代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/

基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。

import numpy as np
import matplotlib.pyplot as plt N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels for j in xrange(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j # print y # lets visualize the data:
plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5)
plt.show() # Train a Linear Classifier # initialize parameters randomly h = 20 # size of hidden layer
W = 0.01 * np.random.randn(D,h)
b = np.zeros((1,h))
W2 = 0.01 * np.random.randn(h,K)
b2 = np.zeros((1,K)) # define some hyperparameters
step_size = 1e-0
reg = 1e-3 # regularization strength # gradient descent loop
num_examples = X.shape[0]
for i in xrange(1): # evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
# print np.size(hidden_layer,1)
scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities
exp_scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization
corect_logprobs = -np.log(probs[range(num_examples),y])
data_loss = np.sum(corect_logprobs)/num_examples
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss if i % 1000 == 0:
print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores
dscores = probs
dscores[range(num_examples),y] -= 1
dscores /= num_examples # backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T)
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0 # finally into W,b
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution
dW2 += reg * W2
dW += reg * W # perform a parameter update
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2 # evaluate training set accuracy
hidden_layer = np.maximum(0, np.dot(X, W) + b)
scores = np.dot(hidden_layer, W2) + b2
predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y))

随机生成的数据

运行结果

Python: Neural Networks的更多相关文章

  1. 【转】Artificial Neurons and Single-Layer Neural Networks

    原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article of ...

  2. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  3. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  7. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  8. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  9. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

随机推荐

  1. java equals与==区别

    java中的数据类型,可分为两类: 1.基本数据类型,也称原始数据类型.byte,short,char,int,long,float,double,boolean   他们之间的比较,应用双等号(== ...

  2. Java中执行存储过程和函数

    装载于:http://www.cnblogs.com/liunanjava/p/4261242.html 一.概述 如果想要执行存储过程,我们应该使用 CallableStatement 接口. Ca ...

  3. 聊聊高并发(三十九)解析java.util.concurrent各个组件(十五) 理解ExecutorService接口的设计

    上一篇讲了Executor接口的设计,目的是将任务的运行和任务的提交解耦.能够隐藏任务的运行策略.这篇说说ExecutorService接口.它扩展了Executor接口,对Executor的生命周期 ...

  4. 【PyCharm编辑器】之无法导入引用手动新建的包或类,报:This inspection detects names that should resolve but don't. Due to dynamic dispatch and duck typing, this is possible in a limited but useful number of cases.

    一.现象描述 如下图所示,手动新建个类包calculator.py,想在test.py文件引用它,发现一直报红线,引用失败 Unresolved reference 'calculator' less ...

  5. 【PyCharm编辑器】之引用selenium包提示错误:Unresolved reference 'selenium' less... (Ctrl+F1)

    一.现象还原: 当新建.py文件时,需要引用selenium中的方法时,报错,提示红波浪线: Unresolved reference 'selenium' less... (Ctrl+F1) Thi ...

  6. android WebView详细使用方法(转)

    1.最全面的Android Webview详解 2.最全面总结 Android WebView与 JS 的交互方式 3.你不知道的 Android WebView 使用漏洞 如果想保证登录状态,就插入 ...

  7. oracle序列sequence

    序列 定义一个序列,自动产生连续的整数.也称序列生成器(sequence generator)产生序列号.在多用户环境下该序列生成器特别有用,可生成各返回序列号而不需要磁盘I/O或事务封锁.序列号为O ...

  8. 多媒体开发之---live555 分析客户端

    live555的客服端流程:建立任务计划对象--建立环境对象--处理用户输入的参数(RTSP地址)--创建RTSPClient实例--发出DESCRIBE--发出SETUP--发出PLAY--进入Lo ...

  9. [python学习] 简单爬取图片站点图库中图片

    近期老师让学习Python与维基百科相关的知识,无聊之中用Python简单做了个爬取"游讯网图库"中的图片,由于每次点击下一张感觉很浪费时间又繁琐.主要分享的是怎样爬取HTML的知 ...

  10. API自动化测试利器——Postman

    自从开始做API开发之后,我就在寻找合适的API测试工具.一开始不是很想用Chrome扩展,用的WizTools的工具,后来试过一次Postman之后就停不下来了,还买了付费的Jetpacks.推出T ...