zoj 3791 An Easy Game dp
An Easy Game
Time Limit: 2 Seconds Memory Limit: 65536 KB
One day, Edward and Flandre play a game. Flandre will show two 01-strings s1 and s2, the lengths of two strings are n. Then, Edward must move exact k steps. In each step, Edward should change exact m positions of s1. That means exact m positions of s1, '0' will be changed to '1' and '1' will be changed to '0'.
The problem comes, how many different ways can Edward change s1 to s2 after k steps? Please calculate the number of the ways mod 1000000009.
Input
Input will consist of multiple test cases and each case will consist of three lines. The first line of each case consist of three integers n (1 ≤ n ≤ 100), k (0 ≤ k ≤ 100), m (0 ≤ m ≤ n). The second line of each case is a 01-string s1. The third line of each case is a 01-string s2.
Output
For each test case, you should output a line consist of the result.
Sample Input
3 2 1
100
001
Sample Output
2
Hint
100->101->001
100->000->001
题目大意:给两个01字符串s1,s2,经过K次操作每次对M个取反,求有多少种方案使得s1==s2。 dp[i][j]表示i次操作之后有j个位置不同的方法数,答案就是dp[t][0]。对于dp[i - 1][j],经过一次操作之后假设把t个位置从不同变为相同,剩下m - t个位置从相同变为不同。
那么dp[i][j + m - t - t] += dp[i - 1][j] * C(j, t) * C(n - j, m - t)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=;
const int Mod=;
int n,k,m,C[maxn][maxn];
LL d[maxn][maxn];
char s1[maxn],s2[maxn]; int max(int a,int b){return a>b?a:b;} void init_C()
{
memset(C,,sizeof(C));
int i,j;
for(i=;i<=;i++)
{
C[i][]=;
for(j=;j<=i;j++)
{
C[i][j]=(C[i-][j-]+C[i-][j])%Mod;
}
}
} void solve()
{
memset(d,,sizeof(d));
int i,j,t,dif=;
for(i=;i<n;i++) dif+=(s1[i]!=s2[i]?:);
d[][dif]=;
for(i=;i<=k;i++)
{
for(j=;j<=n;j++)
{
for(t=max(,m-(n-j));t<=j && t<=m;t++)
{
d[i][j+m-t-t]=(d[i][j+m-t-t]+d[i-][j]*C[j][t]%Mod*C[n-j][m-t]%Mod)%Mod;
}
}
}
printf("%I64d\n",d[k][]);
}
int main()
{
init_C();
while(~scanf("%d %d %d",&n,&k,&m))
{
getchar();
gets(s1);
gets(s2);
solve();
}
return ;
}
zoj 3791 An Easy Game dp的更多相关文章
- ZOJ 3791 An easy game DP+组合数
给定两个01序列,每次操作可以任意改变其中的m个数字 0变 1 1 变 0,正好要变化k次,问有多少种变法 dp模型为dp[i][j],表示进行到第i次变化,A,B序列有j个不同的 变法总和. 循环 ...
- ZOJ 3791 An Easy Game(DP)
题目链接 题意 : 给你两个长度为N的字符串,将第一个字符串每次只能变化M个,问变换K次之后变成第二个字符串一共有几种方法. 思路 : DP.dp[i][j]表示变了 i 次之后有j个不一样的字母的方 ...
- ZOJ 3791 An Easy Game
思路:dp+记忆化搜索,设dp[n][m]表示s1与s2不同字符个数为n,还需要变m步的方法数,那么: dp[n][m] = (c[n][i]*c[N-n][K-i]) * dp[n-i+(K-i ...
- 2014 Super Training #8 C An Easy Game --DP
原题:ZOJ 3791 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3791 题意:给定两个0-1序列s1, s2,操作t ...
- HDU 4359——Easy Tree DP?——————【dp+组合计数】
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- HDU 4359 Easy Tree DP?
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) )
D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) ) 题意 给出一个串 给出删除每一个字符的代价问使得串里面没有hard的子序列需要付出的最小代价(子序列不连续也行) 思路 要 ...
- leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)
leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution) On a staircase, the i-th step ...
- [ZOJ]3541 Last Puzzle (区间DP)
ZOJ 3541 题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态 Description There is one ...
随机推荐
- C08 C语言预处理命令
目录 宏定义 文件包含 条件编译 预处理命令 C语言的预处理:在编译之前进行的处理,不进行编译. C语言的预处理功能有: 宏定义 文件包含 条件编译 预处理命令以符号“#”开头.. 宏定义 不带参数的 ...
- 在线聊天项目1.4版 使用Gson方法解析Json字符串以便重构request和response的各种请求和响应 解决聊天不畅问题 Gson包下载地址
在线聊天项目结构图: 多用户登陆效果图: 多用户聊天效果图: 数据库效果图: 重新构建了Server类,使用了Gson方法,通过解析Json字符串,增加Info类,简化判断过程. Server类代码如 ...
- 一步一步构建iOS持续集成:Jenkins+GitLab+蒲公英+FTP
什么是持续集成 持续集成是一种软件开发实践,即团队开发成员经常集成它们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每次集成都通过自动化的构建(包括编译,发布,自动化测试)来 ...
- C++ string头文件
转载自https://blog.csdn.net/superna666/article/details/52809007/ 作者 zhenzhenjiajia888 标准c++中string类函数介绍 ...
- 【android】签署应用采用相同证书的用处
在应用的预期生命周期内,您应使用相同证书签署所有 APK 应用升级:当系统安装应用的更新时,它会比较新版本和现有版本中的证书.如果证书匹配,则系统允许更新.如果您使用不同的证书签署新版本,则必须为应用 ...
- 下载旧版本的JDK
下载旧版本的JDK 有的时候我们需要去下载旧版本的JDK,但是进入Oracle官网,显示的总是新版的JDK,这里告诉大家怎么样去下载旧版本的JDK. 首先去JavaSE的 下载界面 拉到最下面,找到这 ...
- python3.7 内置函数整理
#!/usr/bin/env python __author__ = "lrtao2010" #python3.7 内置函数整理 #abs(x) #返回数字的绝对值. 参数可以是整 ...
- MYSQL安装与库的基本操作
mysql数据库 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 数据库与文件存储数据区别 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文件 数 ...
- Hard problem CodeForces - 706C
Time limit1000 ms Memory limit262144 kB 题目: Vasiliy is fond of solving different tasks. Today he fou ...
- 关于host,nslookup,dig 的安装
host,nslookup,dig依赖bind包,所以先看一下系统有没有bind包 命令如下:rpm -qa |grep bind 如果没有或者版本太低请升级安装 命令是:yum install bi ...