拓扑排序+set

如果我们直接记录所有路径是不行的,那么我们要降低路径的数量,于是我们把最短路径转换到边上,这样我们就只有m条路径了。

先计算出f[i]和g[i]表示正反拓扑最长链,把所有g插到set里,然后按照拓扑序依次枚举删点,把之前加入过的边删除,删除g[u],查询最大值,然后加入后继边每条边的权值就是f[x]+g[to]+1,再加入f[u]这样我们按照拓扑序就不用加入之前删掉的边,因为我们是按照拓扑序删的,这样后面删的点肯定会影响之前的最长链,如果不影响则说明最长链已经被枚举完了,所以之前的最长链自然也受影响。

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + ;
int n, m, tot, ans = 0x3f3f3f3f, p;
vector<int> G[N], rev[N];
int in[N], a[N], f[N], g[N];
int rd()
{
int x = , f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = x * + c - ''; c = getchar(); }
return x * f;
}
multiset<int> s;
int main()
{
n = rd();
m = rd();
for(int i = ; i <= m; ++i)
{
int u = rd(), v = rd();
G[u].push_back(v);
rev[v].push_back(u);
++in[v];
}
queue<int> q;
for(int i = ; i <= n; ++i) if(in[i] == ) q.push(i);
while(!q.empty())
{
int u = q.front();
a[++tot] = u;
q.pop();
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
f[v] = max(f[v], f[u] + );
if(--in[v] == ) q.push(v);
}
}
for(int i = n; i; --i)
{
int u = a[i];
for(int j = ; j < rev[u].size(); ++j)
{
int v = rev[u][j];
g[v] = max(g[v], g[u] + );
}
}
for(int i = ; i <= n; ++i) s.insert(g[i]);
for(int i = ; i <= n; ++i)
{
int u = a[i];
multiset<int> :: iterator it;
it = s.find(g[u]);
if(it != s.end()) s.erase(it);
for(int j = ; j < rev[u].size(); ++j)
{
it = s.find(f[rev[u][j]] + g[u] + );
s.erase(it);
}
if(!s.empty()) if(*(s.rbegin()) < ans) ans = *(s.rbegin()), p = u;
for(int j = ; j < G[u].size(); ++j)
s.insert(g[G[u][j]] + f[u] + );
s.insert(f[u]);
}
printf("%d %d\n", p, ans);
return ;
}

bzoj3832的更多相关文章

  1. 【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)

    [BZOJ3832][POI2014]Rally(拓扑排序,动态规划) 题面 BZOJ,权限题 洛谷 题解 这题好强啊,感觉学了好多东西似的. 首先发现了一个图画的很好的博客,戳这里 然后我来补充一下 ...

  2. 【bzoj3832】Rally

    Portal -->bzoj3832 Description ​ 给你一个DAG,每条边长度都是\(1\),请找一个点满足删掉这个点之后剩余图中的最长路最短 Solution ​​ 这题的话感觉 ...

  3. BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】

    题目链接 BZOJ3832 题解 神思路orz,根本不会做 设\(f[i]\)为到\(i\)的最长路,\(g[i]\)为\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得 那么一条边\((u,v ...

  4. 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)

    3832: [Poi2014]Rally Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 168  Solved:  ...

  5. BZOJ3832 : [Poi2014]Rally

    f[0][i]为i出发的最长路,f[1][i]为到i的最长路 新建源汇S,T,S向每个点连边,每个点向T连边 将所有点划分为两个集合S与T,一开始S中只有S,其它点都在T中 用一棵线段树维护所有连接属 ...

  6. BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序

    题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...

  7. BZOJ3832: [Poi2014]Rally(拓扑排序 堆)

    题意 题目链接 Sol 最直观的思路是求出删除每个点后的最长路,我们考虑这玩意儿怎么求 设\(f[i]\)表示以\(i\)结尾的最长路长度,\(g[i]\)表示以\(i\)开始的最长路长度 根据DAG ...

  8. BZOJ3832 Rally

    传送门(权限) 题目大意 给定一个有向无环图,可以删去一个点和所有与它相连的边,使得图的其余部分最长路径最小,求这个位置和最小的最长路径长度. 题解 对于每一条边$u\rightarrow v$,设$ ...

  9. 并不对劲的bzoj3832: [Poi2014]Rally

    传送门-> 这题的原理看上去很神奇. 称拓扑图中入度为0的点为“起点”,出度为0的点为“终点”. 因为“起点”和“终点”可能有很多个,算起来会很麻烦,所以新建“超级起点”S,向所有点连边,“超级 ...

随机推荐

  1. binary-tree-maximum-path-sum——二叉树任意一条路径上的最大值

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  2. 专訪阿里陶辉:大规模分布式系统、高性能server设计经验分享

    http://www.csdn.net/article/2014-06-27/2820432 摘要:先后就职于在国内知名的互联网公司,眼下在阿里云弹性计算部门做架构设计与核心模块代码的编写,主要负责云 ...

  3. 邻接表的使用及和vector的比較

    这几天碰到一些对建边要求挺高的题目.而vector不好建边,所以学习了邻接表.. 以下是我对邻接表的一些看法. 邻接表的储存方式 邻接表就是就是每一个节点的一个链表,而且是头插法建的链表,这里我们首先 ...

  4. 可在 html5 游戏中使用的 js 工具库

    可在 html5 游戏中使用的 js 工具库 作者: 木頭 时间: September 21, 2014 分类: Utilities,Game 使用 cocos2d-js 3.0 开发游戏项目两三个月 ...

  5. Django-model_form

    ModelForm a. class Meta: model, # 对应Model的 fields=None, # 字段 exclude=None, # 排除字段 labels=None, # 提示信 ...

  6. .NET MVC 4 实现用户注册功能

    初学MVC,踩了不少坑,所以通过实现一个用户注册功能把近段时间学习到的知识梳理一遍,方便以后改进和查阅. 问题清单: l 为什么EF自动生成的表名后自动添加了s? l 如何为数据库初始化一些数据? l ...

  7. 在jquery的ajax方法中的success中使用return要注意的问题

    jquery的ajax方法:在success中使用return:来结束程序的时候,结束的只是success这个方法,也就是说success中的return的作用范围只是success: 如果要想在su ...

  8. 压力测试工具ab,wrk,locust简介

    ab 无疑是目前最常见的压力测试工具.其典型用法如下: shell> ab -k -c 100 -t 10 http://domain/path 其中,参数「c」表示的是并发, 参数「t」表示的 ...

  9. 使用UIWebView载入本地或远程server上的网页

    大家都知道,使用UIWebView载入本地或远程server上的网页,sdk提供了三个载入接口: - (void)loadRequest:(NSURLRequest *)request; - (voi ...

  10. EasyCamera Android安卓移动视频监控单兵设备接入EasyDarwin开源流媒体云平台

    前言 随着Android系统的不断更新和发展,现在越来越多的硬件产品选择用安卓系统作为运行环境,电视机,机顶盒.门禁.行车记录仪.车载系统.单兵设备等等,Android系统底层还是Linux,但对上层 ...