拓扑排序+set

如果我们直接记录所有路径是不行的,那么我们要降低路径的数量,于是我们把最短路径转换到边上,这样我们就只有m条路径了。

先计算出f[i]和g[i]表示正反拓扑最长链,把所有g插到set里,然后按照拓扑序依次枚举删点,把之前加入过的边删除,删除g[u],查询最大值,然后加入后继边每条边的权值就是f[x]+g[to]+1,再加入f[u]这样我们按照拓扑序就不用加入之前删掉的边,因为我们是按照拓扑序删的,这样后面删的点肯定会影响之前的最长链,如果不影响则说明最长链已经被枚举完了,所以之前的最长链自然也受影响。

#include<bits/stdc++.h>
using namespace std;
const int N = 5e5 + ;
int n, m, tot, ans = 0x3f3f3f3f, p;
vector<int> G[N], rev[N];
int in[N], a[N], f[N], g[N];
int rd()
{
int x = , f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = x * + c - ''; c = getchar(); }
return x * f;
}
multiset<int> s;
int main()
{
n = rd();
m = rd();
for(int i = ; i <= m; ++i)
{
int u = rd(), v = rd();
G[u].push_back(v);
rev[v].push_back(u);
++in[v];
}
queue<int> q;
for(int i = ; i <= n; ++i) if(in[i] == ) q.push(i);
while(!q.empty())
{
int u = q.front();
a[++tot] = u;
q.pop();
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
f[v] = max(f[v], f[u] + );
if(--in[v] == ) q.push(v);
}
}
for(int i = n; i; --i)
{
int u = a[i];
for(int j = ; j < rev[u].size(); ++j)
{
int v = rev[u][j];
g[v] = max(g[v], g[u] + );
}
}
for(int i = ; i <= n; ++i) s.insert(g[i]);
for(int i = ; i <= n; ++i)
{
int u = a[i];
multiset<int> :: iterator it;
it = s.find(g[u]);
if(it != s.end()) s.erase(it);
for(int j = ; j < rev[u].size(); ++j)
{
it = s.find(f[rev[u][j]] + g[u] + );
s.erase(it);
}
if(!s.empty()) if(*(s.rbegin()) < ans) ans = *(s.rbegin()), p = u;
for(int j = ; j < G[u].size(); ++j)
s.insert(g[G[u][j]] + f[u] + );
s.insert(f[u]);
}
printf("%d %d\n", p, ans);
return ;
}

bzoj3832的更多相关文章

  1. 【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)

    [BZOJ3832][POI2014]Rally(拓扑排序,动态规划) 题面 BZOJ,权限题 洛谷 题解 这题好强啊,感觉学了好多东西似的. 首先发现了一个图画的很好的博客,戳这里 然后我来补充一下 ...

  2. 【bzoj3832】Rally

    Portal -->bzoj3832 Description ​ 给你一个DAG,每条边长度都是\(1\),请找一个点满足删掉这个点之后剩余图中的最长路最短 Solution ​​ 这题的话感觉 ...

  3. BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】

    题目链接 BZOJ3832 题解 神思路orz,根本不会做 设\(f[i]\)为到\(i\)的最长路,\(g[i]\)为\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得 那么一条边\((u,v ...

  4. 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)

    3832: [Poi2014]Rally Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 168  Solved:  ...

  5. BZOJ3832 : [Poi2014]Rally

    f[0][i]为i出发的最长路,f[1][i]为到i的最长路 新建源汇S,T,S向每个点连边,每个点向T连边 将所有点划分为两个集合S与T,一开始S中只有S,其它点都在T中 用一棵线段树维护所有连接属 ...

  6. BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序

    题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...

  7. BZOJ3832: [Poi2014]Rally(拓扑排序 堆)

    题意 题目链接 Sol 最直观的思路是求出删除每个点后的最长路,我们考虑这玩意儿怎么求 设\(f[i]\)表示以\(i\)结尾的最长路长度,\(g[i]\)表示以\(i\)开始的最长路长度 根据DAG ...

  8. BZOJ3832 Rally

    传送门(权限) 题目大意 给定一个有向无环图,可以删去一个点和所有与它相连的边,使得图的其余部分最长路径最小,求这个位置和最小的最长路径长度. 题解 对于每一条边$u\rightarrow v$,设$ ...

  9. 并不对劲的bzoj3832: [Poi2014]Rally

    传送门-> 这题的原理看上去很神奇. 称拓扑图中入度为0的点为“起点”,出度为0的点为“终点”. 因为“起点”和“终点”可能有很多个,算起来会很麻烦,所以新建“超级起点”S,向所有点连边,“超级 ...

随机推荐

  1. openCV—Python(1)——初始化环境

    本系列博客主要參考自--Adrian Rosebrock:<Practical Python and OpenCV: An Introductory,Example Driven Guide t ...

  2. php自定义错误

    function myErrorHandler ( $errno , $errstr , $errfile , $errline ) { if (!( error_reporting () & ...

  3. substr使用注意

    substr使用时要判断起点和长度是否超过了串本身的长度,否则会抛异常

  4. laravel 将数组转化成字符串 再把字符串转化成数组

    这是在给阮少翔改代码的时候用的方法, 开始的数据用explored转化成数组不是想要的结果, 我就自己写了一个方法把有用的信息提取出来拼接成一个字符串, 再用explored将字符串转化成数组.   ...

  5. OI知识体系

  6. libraries_v140_x64_py35_1.0.1.tar.bz2 libraries_v120_x64_py27_1.1.0.tar 下载链接以及百度云下载链接

    下载链接 wget  -c  https://github.com/willyd/caffe-builder/releases/download/v1.0.1/libraries_v140_x64_p ...

  7. 【BZOJ4952】lydsy七月月赛 E 二分答案

    [BZOJ4952]lydsy七月月赛 E 题面 题解:傻题...二分答案即可,精度有坑. #include <cstdio> #include <cstring> #incl ...

  8. mysql-test-run.pl

    wget https://raw.githubusercontent.com/mysql/mysql-server/5.7/mysql-test/mysql-test-run.pl

  9. spring boot redis分布式锁 (转)

    一. Redis 分布式锁的实现以及存在的问题 锁是针对某个资源,保证其访问的互斥性,在实际使用当中,这个资源一般是一个字符串.使用 Redis 实现锁,主要是将资源放到 Redis 当中,利用其原子 ...

  10. [数据挖掘课程笔记]关联规则挖掘 - Apriori算法

    两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...