题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559

看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html

https://blog.csdn.net/lvzelong2014/article/details/79159346

https://blog.csdn.net/qq_35649707/article/details/78018944

还只会最简单的那种,正好在这道题里可以用到;

计算方案数,可以考虑DP,利用那个所有成绩都小于 B 的性质,枚举超过 B 的一门课;

设计 f[i][j] 表示当前到了第 i 门课,还剩 j 个人被碾压(一开始是所有人都被碾压,然后渐渐突破...);

则 f[i][j] = ∑(j<=t<=n-1) f[i-1][t] * C(n-1-t,rk[i]-1-(t-j)) * C(t,j) * g[i]

其中第一个组合数表示在 n-1-t 个上一次已经不被碾压的人中选出  rk[i]-1-(t-j) 个作为这次成绩高于 B 的人,第二个组合数表示从 t 个上次被碾压的人中选出 j 个这次仍然被碾压(也等同与选出 t-j 个人这次成绩高于 B );

g[i] 则表示在 i 这门课上的成绩分布情况,则选出的人的成绩可以对号入座;

而 g[i] = ∑(1<=j<=lim[i]) j^(n-rk[i]) * (lim[i]-j)^(rk[i]-1),表示若 B 的成绩是 j,则有 n-rk[i] 个人的成绩在 1~j 中选择,有 rk[i]-1 个人的成绩在 lim[i]-j~lim[i] 中选择;

可以发现这是个大约 n+1 次的多项式,所以设出几个点,求出当 x=lim 时的取值即可,这个过程的复杂度是 n^2 的。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=,mod=1e9+;
int n,m,K,lm[xn],rk[xn],g[xn],c[xn][xn],f[xn][xn],xx[xn],yy[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
int pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)
if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
for(int i=;i<=n;i++)c[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)c[i][j]=upt(c[i-][j]+c[i-][j-]);
}
int solve(int lim,int n,int m)
{
int num=n+m+,sum=;
for(int i=;i<=num;i++)
xx[i]=i,yy[i]=upt(yy[i-]+(ll)pw(i,n)*pw(lim-i,m)%mod);
for(int i=;i<=num;i++)
{
ll s1=,s2=;
for(int j=;j<=num;j++)
if(i!=j)//!!!
s1=s1*(lim-xx[j])%mod,s2=s2*(xx[i]-xx[j])%mod;
sum=upt(sum+s1*pw(s2,mod-)%mod*yy[i]%mod);
}
return sum;
}
int main()
{
n=rd()-; m=rd(); K=rd(); init();//n-1
for(int i=;i<=m;i++)lm[i]=rd();
for(int i=;i<=m;i++)rk[i]=rd(),g[i]=solve(lm[i],n-rk[i]+,rk[i]-);//+1
f[][n]=;//n
for(int i=;i<=m;i++)
for(int j=K;j<=n;j++)//k
for(int t=j;t<=n;t++)
{
if(t-j>rk[i]-||j>n-rk[i]+)continue;//+1!
f[i][j]=upt(f[i][j]+(ll)f[i-][t]*c[t][j]%mod*c[n-t][rk[i]--t+j]%mod*g[i]%mod);
}
printf("%d\n",f[m][K]);
return ;
}

bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值的更多相关文章

  1. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  2. BZOJ4559: [JLoi2016]成绩比较(dp 拉格朗日插值)

    题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \ ...

  3. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  4. bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...

  5. BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)

    这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...

  6. ●BZOJ 4559 [JLoi2016]成绩比较

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...

  7. P3270 [JLOI2016]成绩比较(拉格朗日插值)

    传送门 挺神仙的啊-- 设\(f[i][j]\)为考虑前\(i\)门课程,有\(j\)个人被\(B\)爷碾压的方案数,那么转移为\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\ ...

  8. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  9. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

随机推荐

  1. log4net报错Could not load type 'System.Security.Claims.ClaimsIdentity'

    使用log4net,在win7上可以正常使用,但是在部分xp电脑上可以生成access数据库,但是无法写数据到mdb 排除了程序原因,怀疑是xp缺少什么dll之类的 偶然查到log4net的调试方法: ...

  2. 阿里巴巴为什么主推HSF?比Dubbo有哪些优势?

    作者:匿名用户链接:https://www.zhihu.com/question/39560697/answer/187538165来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  3. POJ2386 Lake Counting 【DFS】

    Lake Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20782   Accepted: 10473 D ...

  4. Solaris服务管理

    远程登录协议 telnet \ssh 等.当然我们可以查看谁登录过我的系统,以及可以利用ftp记录日志. 一.SMF: 服务管理工具 优点:自动恢复意外终止的服务,支持服务的依赖关系,一个服务可以有多 ...

  5. Cursor类用法:

      Cursor类用法:   http://www.2cto.com/kf/201109/103163.html   Ctrl+Shift+G 查找类.方法和属性的引用.这是一个非常实用的快捷键,例如 ...

  6. LeetCode 第 3 题(Longest Substring Without Repeating Characters)

    LeetCode 第 3 题(Longest Substring Without Repeating Characters) Given a string, find the length of th ...

  7. Codeforces 569 B. Inventory

    click here~~ **B. Inventory** time limit per test1 second memory limit per test256 megabytes inputst ...

  8. C++卷积神经网络实例:tiny_cnn代码具体解释(7)——fully_connected_layer层结构类分析

    之前的博文中已经将卷积层.下採样层进行了分析.在这篇博文中我们对最后一个顶层层结构fully_connected_layer类(全连接层)进行分析: 一.卷积神经网路中的全连接层 在卷积神经网络中全连 ...

  9. 后台运行命令:&amp;和nohup command &amp; 以及关闭、查看后台任务

    当我们在终端或控制台工作时.可能不希望由于执行一个作业而占住了屏幕,由于可能还有更重要的事情要做,比方阅读电子邮件. 对于密集訪问磁盘的进程,我们更希望它可以在每天的非负荷高峰时间段执行(比如凌晨). ...

  10. 深入Garbage First垃圾收集器(二)背景

    G1 GC是目前Java HotSpot虚拟机最新的垃圾收集器. 它是一种压缩型收集器,其基本原则是首先收集尽可能多的垃圾,因此被命名为"Garbage First" GC. G1 ...