首先总体概括一下Scipy的用处

>>> #Scipy依赖于numpy
>>> #Scipy提供了真正的矩阵
>>> #Scipy包含的功能:最优化,线性代数,积分,插值,拟合,特殊函数,快速傅里叶变换,信号处理,图形处理,常微分方程求解器等
>>> #Scipy是高端科学计算工具包
>>> #Scipy由一些特殊功能的子模块组成
>>> #图片消噪

下面介绍一些具体的应用

1:求圆周率

从图片易知道,圆周率为半径为一的半圆的面积的两倍,所以只需要求解半圆的面积即可,可通过积分的形式求解

具体过程如下

>>>x=np.linspace(-1,1,1000)#-1到1分成1000份来进行积分

>>> f=lambda x:(1-x**2)**0.5

>>>plt.plot(x,f(x))#画出该图形

>>> plt.figure(figsize=(4,2))#设置图形大小

>>> plt.show()

>>> #使用scipy.integrate进行积分,调用quad()方法
>>> import scipy.integrate as integrate
>>> integrate.quad (f,-1,1)#求积分
(1.5707963267948983, 1.0002354500215915e-09, 1.5707963267948983, 1.0002354500215915e-09)

>>> sq,err=integrate.quad (f,-1,1)#sq是半圆的面积,err是误差
>>> pi=sq*2#圆的面积是圆周率
>>> pi

3.1415926535897967

2:文件处理

>>> #Scipy文件输入输出
>>> #随机生成数组,使用Scipy中的io.savement()保存
>>> #文件格式是.mat,标准的二进制文件
>>> import scipy.io as spio
>>> nd=np.random.randint(0,150,size=10)
>>> spio.savemat('nd',{'data':nd})#保存文件,文件名为nd
>>> spio.loadmat('nd')['data']#读取文件
array([[ 92, 67, 50, 145, 81, 101, 144, 101, 92, 106]])
>>> #读取scipy中的misc.imread()/imsave()
>>> import scipy.misc as misc
>>> cat_data=misc.imread ('C:/a/a.jpg')#对图片进行操作
>>> misc.imshow(cat_data)

>>> misc.imshow(misc.imrotate(cat_data,angle=90))#旋转90度

>>> a=misc.imresize(cat_data,size=0.5)
>>> misc.imshow(a)#缩小一倍

>>> q=misc.imfilter(cat_data,'blur')#给图片添加一种模糊效果,smooth是平滑效果,当然还有许多其他的效果
>>> misc.show(q)

>>> misc.imshow(q)

3:操作图片

>>> #使用scipy.misc.face(gray=True)获取图片,使用ndimage移动坐标,旋转图片,切割图片缩放图片

>>> import numpy as np

>>> import scipy.misc as misc

>>> import scipy.ndimage as ndimage

>>> face=misc.face(gray=True)#图片设置为黑白色了

>>> misc.imshow(face)

>>> import matplotlib.pyplot as plt

>>> ndimage.shift(face,[200,0])#图片向下移动200个单位

array([[  0,   0,   0, ...,   0,   0,   0],

[  0,   0,   0, ...,   0,   0,   0],

[  0,   0,   0, ...,   0,   0,   0],

...,

[203, 207, 210, ..., 102, 100, 100],

[205, 208, 210, ..., 111, 109, 108],

[206, 210, 211, ..., 119, 117, 116]], dtype=uint8)

>>> ss=ndimage.shift(face,[200,0])#图片向下移动200个单位

>>> plt.imshow(ss)

<matplotlib.image.AxesImage object at 0x00000000110F8A58>

>>> plt.show()

>>> ss1=ndimage.shift(face,[350,0],mode='mirror')#图片向下移动350个单位,并产生镜像效果

>>> plt.imshow(ss)

<matplotlib.image.AxesImage object at 0x000000001161C9B0>

>>> plt.show()

>>> plt.imshow(ss1)

<matplotlib.image.AxesImage object at 0x000000001180EFD0>

>>> plt.show()

>>> #mode 还可以指定为near和wrap等

>>> r=ndimage.rotate(face,angle=180,axes=(0,1))

>>> plt.imshow(r)

<matplotlib.image.AxesImage object at 0x000000001D7A3470>

>>> plt.show()

>>> #旋转

>>> #下面是缩放

>>> z=ndimage.zoom(face,zoom=0.5)

>>> plt.imshow(z)

<matplotlib.image.AxesImage object at 0x00000000117BE7B8>

>>> plt.show()

>>> #缩小一半

>>> face2=face[:512,-512:]

>>> plt.imshow(face2)

<matplotlib.image.AxesImage object at 0x000000001DA75B38>

>>> plt.show()

#

 根据坐标判断缩小

>>> face_g =ndimage.gaussian_filter(face,sigma=1)

>>> plt.imshow(face_g)

<matplotlib.image.AxesImage object at 0x0000000010D15DA0>

>>> plt.show()

>>> #高斯滤波可以使图片变得清晰些

>>> plt_m=ndimage.median_filter(face,size=2)

>>> plt.imshow(plt_m)

<matplotlib.image.AxesImage object at 0x000000001E2E58D0>

>>> plt.show()

>>> #中值滤波可以使图片变得清晰些

>>> #signal维纳滤波,滤镜尺寸的标量

>>> import scipy.signal  as signal

>>> sw=signal.wiener(face,mysize=10)

>>> plt.imshow(sw)

<matplotlib.image.AxesImage object at 0x000000001DC1D278>

>>> plt.show()

Scipy的应用的更多相关文章

  1. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  2. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  3. python scipy学习-曲线拟合

    根据某地每月的平均温度[17, 19, 21, 28, 33, 38, 37, 37, 31, 23, 19, 18]拟合温度函数. import numpy as np import matplot ...

  4. [python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决

    这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所 ...

  5. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

  6. Scipy - Python library - Math tool - Begin

    Introduction Scientific Computing Tools for Python. Seen in Scipy.org. Environment Linux, CentOS 7 w ...

  7. Ubuntu下安装Numpy, SciPy and Matplotlib

    Python开发环境包含科学计算,需要安装NumPy, SciPy, Matplotlib.其中Matplotlib依赖于Python和NumPy.我们先安装NumPY和SciPy.  Matplot ...

  8. scipy科学计算库

    特定函数 例贝塞尔函数: 积分 quad,dblquad,tplquad对应单重积分,双重积分,三重积分 from scipy.integrate import quad,dblquad,tplqua ...

  9. Python导入Scipy子模块时出错

    导入Scipy子模块时报错,出现的问题都是提示 61 from numpy._distributor_init import NUMPY_MKL  # requires numpy+mklNo mod ...

  10. Scipy学习笔记 矩阵计算

    Scipy学习笔记 非本人原创  原链接 http://blog.sina.com.cn/s/blog_70586e000100moen.html 1.逆矩阵的求解 >>>impor ...

随机推荐

  1. 搭建vps***

    快速搭建ShadowSocks wget --no-check-certificate -O shadowsocks.sh https://raw.githubusercontent.com/tedd ...

  2. ABAP 给动态变量赋值

    [转自 http://blog.csdn.net/forever_crazy/article/details/6544830] 需求: 有时写程序的时候,需要给某个动态变量 赋值操作,当字段比较多时, ...

  3. 在命令符模式下编译并执行Java程序

    对于Java初学者,建议使用纯文本文件来编写Java程序,并在命令符模式下使用工具程序编译和执行Java程序.使用javac工具编译.java,使用java工具执行.class.(推荐sublime编 ...

  4. RaspBerry Pi3 ~ 内核编译

    RaspBerryPi3-内核编译 转载注明出处:http://www.cnblogs.com/einstein-2014731/p/5985128.html 在有道云笔记的同步分享:http://n ...

  5. PAT 甲级 1028. List Sorting (25) 【结构体排序】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1028 思路 就按照 它的三种方式 设计 comp 函数 然后快排就好了 但是 如果用 c++ ...

  6. Linux环境下使用dosemu写汇编

    本章学习内容是汇编语言,现在直接写汇编的机会不多了,但一定要能读懂,信息安全的核心思维方式“逆向”在这有很好很直接的体现,反汇编就是直接的逆向工程. 所以我在前几天的学习中在Ubuntu环境下安装了可 ...

  7. Antler 工具使用(.g 转.java / .cs)

    1. JAVA环境 2. Antler 工具包: antlr-3.5.1-complete-no-st3.jar 路径加入classpath 3. cmd命令行: java org.antlr.Too ...

  8. python的writelines读空行

    在文件中,如果遇到一个空白行,readline()并不会返回一个空串,因为每一行的末尾还有一个或多个分隔符,因此“空白行”至少会有一个换行符或者系统使用的其他符号.只有当真的读到文件末尾时,才会读到空 ...

  9. 第一节 课程简介与HTML5概述

    第一节 课程简介与HTML5概述 *********************************************************** 1.1课程简介 教学目的: 从基础入手到能够运 ...

  10. Python 使用正则表达式验证密码必须包含大小写字母和数字

    校验密码是否合法的程序. 输入一个密码 1.长度5-10位 2.密码里面必须包含,大写字母.小写字母和数字 3.最多输入5次 ===================================== ...