17997 Simple Counting

时间限制:2000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: 不限定

Description

Ly is crazy about counting . Recently , he got a simple problem , but he had to learn Gaoshu these days .So , he turns to you for help .
You are given a sequence A with n positive integers numbered from 1 to n , and then expected to answer Q queries .
Each queries contains an interval [L,R] , you should find the number of index i which satisfies :
{i | Ai mod (i-L+1) = 0 , L <= i <= R }

where Ai mod (i-L+1) = 0 means that Ai can be divided by (i-L+1) .

输入格式

The first line of the input is an integer T , indicates the number of test cases .
Then T cases followed. For each test case :
The first line contains two integers n, Q .
The second line contains n positive integers A1, A2, …. An .
The next Q line , each line contains two integers L, R. Data range :
1<= T <= 20
1 <= n, Q <= 20000
1<= Ai <= 50000
1<= L <= R <= n

输出格式

For each query, output a single line with an integer indicates the answer expected .

输入样例

2
5 2
1 2 3 4 5
1 5
3 5 6 3
10 7 3 6 24 11
1 3
2 5
5 6

输出样例

5
2
2
3
1

提示

Huge input, scanf is preferred for C/C++.

During first sample ,
for the first query ,A1 mod 1 = 0 , A2 mod 2 = 0 , A3 mod 3 = 0 , A4 mod 4 = 0 ,A5 mod 5 = 0 , so the answer is 5 ;
for the second query , A3 mod 1 = 0 , A4 mod 2 = 0 , A5 mod 3 != 0 , so the answer is 2 .

给定n个数字和m次询问,每次给定区间[L, R],然后问a[L] % 1 == 0?  a[L + 1] % 2 == 0?,统计答案。

思路:考虑固定左端点L, 就是,对于每一个数字a[i],首先我们已经知道他在数组里的位置是i。

那么如果k是他的约数的话。如果真有询问问到它是否%k==0?,那么这个时候它应该从哪里开始这段区间的询问呢?

应该要在[i - k + 1, ]处吧,因为i - L + 1 = k。得到L等于这个。

然后就可以用一个vector[L]来保存,以L为开始的区间询问,那些位置会是得到ans的。然后二分小于等于R的个数就可以了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
vector<int>pos[maxn];
void work() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
pos[i].clear();
}
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
int end = (int)sqrt(x * 1.0);
for (int j = ; j <= end; ++j) {
if (x % j == ) {
int L = i - j + ;
if (L >= ) {
pos[L].push_back(i);
} else break;
if (x / j == j) continue;
L = i - (x / j) + ;
if (L >= ) {
pos[L].push_back(i);
}
}
}
}
for (int i = ; i <= n; ++i) {
sort(pos[i].begin(), pos[i].end());
}
for (int i = ; i <= m; ++i) {
int L, R;
scanf("%d%d", &L, &R);
int ans = upper_bound(pos[L].begin(), pos[L].end(), R) - pos[L].begin();
printf("%d\n", ans);
}
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

17997 Simple Counting 数学的更多相关文章

  1. Codeforces 911D. Inversion Counting (数学、思维)

    题目链接:Inversion Counting 题意: 定义数列{ai|i=1,2,...,n}的逆序对如下:对于所有的1≤j<i≤n,若ai<aj,则<i,j>为一个逆序对. ...

  2. TOJ 1258 Very Simple Counting

    Description Let f(n) be the number of factors of integer n. Your task is to count the number of i(1 ...

  3. ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)

    Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...

  4. 「10.8」simple「数学」·walk「树上直径」

    A. Simple 本来以为很难,考场瞎推了推好像会了...... 想起小凯的诱惑,迷?? 首先$n$,$m$,$q$同除$gcd(n,m)$,显然$q$以内的数假如不是$gcd$的倍数,那么一定不能 ...

  5. UVA 11401 - Triangle CountingTriangle Counting 数学

    You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...

  6. [CSP-S模拟测试]:Simple(数学)

    题目描述 对于给定正整数$n,m$,我们称正整数$c$为好的,当且仅当存在非负整数$x,y$,使得$n\times x+m\times y=c$. 现在给出多组数据,对于每组数据,给定$n,m,q$, ...

  7. zoj 3286 Very Simple Counting---统计[1,N]相同因子个数

    Very Simple Counting Time Limit: 1 Second      Memory Limit: 32768 KB Let f(n) be the number of fact ...

  8. 13 Stream Processing Patterns for building Streaming and Realtime Applications

    原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...

  9. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

随机推荐

  1. html页面表格导出到excel总结

    转载:http://www.cnblogs.com/liuguanghai/archive/2012/12/31/2840262.html <table id="tableExcel& ...

  2. elasticsearch 中文分词(elasticsearch-analysis-ik)安装

    elasticsearch 中文分词(elasticsearch-analysis-ik)安装 下载最新的发布版本 https://github.com/medcl/elasticsearch-ana ...

  3. 为 Android 平台开发一个输入法

    学习目标: 实现新的输入法 学习目的: 掌握Android输入法框架 学习收获: Android 1.5 新特色之一就是输入法框架(Input Method Framework,IMF),正是它的出现 ...

  4. html5--5-9 绘制扇形

    html5--5-9 绘制扇形 学习要点 综合运用已经学过的知识绘制一个扇形 矩形的绘制方法 rect(x,y,w,h)创建一个矩形 strokeRect(x,y,w,hx,y,w,h) 绘制矩形(无 ...

  5. hpuoj 1193: Interval

    Interval [STL.双指针.二分] 题目链接 http://acm.hpu.edu.cn/problem.php?id=1193 或者 题目链接 http://acm.nyist.net/Ju ...

  6. 移植最新版libmemcached到VC++的艰苦历程和经验总结(上)

    零.前言: 该篇博客的Title原计划是“在VC++中调用libmemcached的设计技巧”,可结果却事与原违,原因很简单,移植失败了.尽管结果如此,然而这3天的付出却是非常值得的,原因也很简单,收 ...

  7. 12306.cn网站自动登录器源代码

    去年过年放假的时候写了一个12306.cn网站的自动登录器,刚好那时候放假了,所以没把源代码放出来,现在将代码发出来,由于编写得比较仓促(从放假的下午19:00左右到晚上到00:00左右),很多细节问 ...

  8. Android Studio3.0中dependencies依赖由compile变为implementation的区别

    前言 Android Studio版本更新至3.0了,更新后,连带着com.android.tools.build:gradle 工具也升级到了3.0.0,在3.0.0中使用了最新的Gralde 4. ...

  9. vue-element el-select value-key

    如果select绑定的值为对象,请务必指定value-key为它的唯一性标示 demo: data(){ return{ test:'', arr:[{id:1,name:'张三'},{id:2,na ...

  10. ASP.NET Core 2.2 附加的数据文件存放在项目文件夹内

    在ASP.NET 4.x中(包括ASP.NET MVC 5),可以通过附加数据库文件的方式,将数据库保存在项目的文件中.这种方式对于不同时段需要更换计算机(白天办公室,晚上家里)开发时带来好处. 而. ...