参考书

《TensorFlow:实战Google深度学习框架》(第2版)

这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码都是手敲了一遍。这本书对于想TensorFlow入门的小伙伴来说,可以看到第8章了解一下循环神经网络的原理,第8章最后的例子举的真的是很烂,用循环神经网络去预测sin函数曲线,我是真的佩服这种例子都能想得出来。循环神经网络,不应该找一个经典的,与时间有关的具有时间累积效应的例子之类的吗,比如说钢材随时间的损坏程度之类的(我瞎编的)。后面的第9章写的真的是,可能是我理解能力不够,一个完整的例子就完完整整把代码铺上可以吗?前面说过的代码也铺上可以吗,不会重复的。书里总是出现各种各样的函数,说前面介绍过了,这里与前面类似所以不写了。一个完整的处理框架这么重要的函数说不写就不写了吗?真的是对于我这种读者造成了非常大的困扰。洋洋洒洒那么多代码敲下来,最后因为被省略的代码,导致这个程序无法运行。也不能与书中给出的结果相比对,真的是气炸了。。。书里还有很多数据处理的部分,在前面处理了一部分数据,给出了处理数据的框架,到后面完整版代码的时候,处理数据部分就省略了。所以读者并不知道数据长啥样,然后就给出结果了,为了证明这个程序是能跑的,结果一粘贴,太不负责任了吧。(特别是第9章自然语言处理部分,明明不知道数据是啥样,还是硬着头皮把所有的代码敲了一遍,哎。。。)

下面是Page250关于Seq2Seq模型的代码实现数据部分的代码

# 假设输入数据已经用了9.2.1小节中的方法转换成了单词编号的格式。

SRC_TRAIN_DATA = "/path/to/data/train.en"        源语言输入文件。

TRG_TRAIN_DATA = "/path/to/data/train.zh"        目标语言输入文件。

我只想说假如你妹啊,这里把数据长啥样和数据处理部分加进来不行吗,我也没有train.en也没有train.zh。这个翻译模型我连样本都没有玩个锤子啊。。。

以上仅代表个人观点,本人表达能力理解能力都有限,如果感觉我言辞激烈,那肯定是你理解的问题哈哈哈哈。。。

【书评】【不推荐】《TensorFlow:实战Google深度学习框架》(第2版)的更多相关文章

  1. 学习《TensorFlow实战Google深度学习框架 (第2版) 》中文PDF和代码

    TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速. ...

  2. [Tensorflow实战Google深度学习框架]笔记4

    本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 ...

  3. 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)

    学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...

  4. TensorFlow+实战Google深度学习框架学习笔记(5)----神经网络训练步骤

    一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训 ...

  5. TensorFlow实战Google深度学习框架-人工智能教程-自学人工智能的第二天-深度学习

    自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 T ...

  6. TensorFlow实战Google深度学习框架10-12章学习笔记

    目录 第10章 TensorFlow高层封装 第11章 TensorBoard可视化 第12章 TensorFlow计算加速 第10章 TensorFlow高层封装 目前比较流行的TensorFlow ...

  7. TensorFlow实战Google深度学习框架5-7章学习笔记

    目录 第5章 MNIST数字识别问题 第6章 图像识别与卷积神经网络 第7章 图像数据处理 第5章 MNIST数字识别问题 MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会 ...

  8. TensorFlow实战Google深度学习框架1-4章学习笔记

    目录 第1章 深度学习简介 第2章 TensorFlow环境搭建 第3章 TensorFlow入门 第4章 深层神经网络   第1章 深度学习简介 对于许多机器学习问题来说,特征提取不是一件简单的事情 ...

  9. Tensorflow实战Google深度学习框架-总结-1

    第一章:深度学习简介   1⃣️应用有 1.计算机视觉 2.语音识别 3.自然语言处理 4.人机博弈   2⃣️深度学习,机器学习,AI 的关系

  10. TensorFlow+实战Google深度学习框架学习笔记(10)-----神经网络几种优化方法

    神经网络的优化方法: 1.学习率的设置(指数衰减) 2.过拟合问题(Dropout) 3.滑动平均模型(参数更新,使模型在测试数据上更鲁棒) 4.批标准化(解决网络层数加深而产生的问题---如梯度弥散 ...

随机推荐

  1. SEO大师分析的八条

  2. Android笔记之获取显示器宽高

    原先的Display.getWidth().Display.getHeight()已废弃 推荐的获取Display宽高的方法如下 DisplayMetrics metrics = new Displa ...

  3. 8.JS数据类型

    ① 数据类型:字符串,数字,布尔,数组,对象,Null,Undefined ② JavaScript拥有动态类型.这意味着相同的变量可用作不同的类型: 实例 var x:   //x为undefine ...

  4. 【C++基础学习】成员对象与对象数组

    第一部分 对象成员与对象数组 从一个简单的例子开始说起,首先定义一个Coordinate的类,里面有两个公有的成员变量m_iX和m_iY,分别代表横坐标和纵坐标. 接下来,定义一个对象数组cood和一 ...

  5. Android开发之onMeasure(int widthMeasureSpec, int heightMeasureSpec)方法

    onMeasure()函数由包含这个View的具体的ViewGroup调用,因此值也是由其ViewGroup中传入的.子类View的这两个参数widthMeasureSpec, heightMeasu ...

  6. Xmpp学习之Asmack取经-asmack入门(一)

    1.XMPPConnection:它主要是用来创建一个跟XMPP服务端的Socket连接.它是与Jabber服务端的默认连接并且已经在RFC 3920中精确定义过了.示例如下: XMPPConnect ...

  7. charles抓取线上接口数据替换为本地json格式数据

    最近要做下拉刷新,无奈测试服务器的测试数据太少,没有足够的数据做下拉刷新,所以用charles抓取了测试服务器的接口,然后在伪造了很多数据返回到我的电脑上,下面来说说使用方法: 第一步: 安装FQ软件 ...

  8. jquery特效(5)—轮播图③(鼠标悬浮停止轮播)

    今天很无聊,就接着写轮播图了,需要说明一下,这次的轮播图是在上次随笔中jquery特效(3)—轮播图①(手动点击轮播)和jquery特效(4)—轮播图②(定时自动轮播)的基础上写出来的,也就是本次随笔 ...

  9. wait()和notify()

    从https://www.cnblogs.com/toov5/p/9837373.html 可以看到他的打印是一片一片的,这边博客介绍怎么避免掉 使用notify 和 wait的时候 要注意 是在sy ...

  10. 记录下linux好用的命令

    http://mp.weixin.qq.com/s/LU1iAWfssv1x-QMX6hJqmQ