ZOJ 3537 Cake (区间DP,三角形剖分)
题意:
给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut."。若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2份三角形蛋糕给小伙伴吃,但是每切一次需要一个费用,公式是:cost[i][j] = |xi + xj| * |yi + yj| % p 表示在两点i和j之间切一刀的费用。问最少费用是多少?
思路:
判断是否凸多边形需要用到求凸包的Andrew算法,时间复杂度为O(nlogn),然后判断凸包内的点数是否为n就行了。(大白书p271)
求最小费用需要用到分治的一些思想,当然主要还是dp。
如下图的凸多边形(图来自这里),如果点1和点n还差1个点就成为三角形了,我们可以枚举这个点k,切两刀,取出K0(不能再切),变成K1和K2两块,以刚切的1->k和k->n这两条边为基边,继续分治切下去,直到剩下1个三角形为止。那么以edge[i][j]为基边来切开这个子凸多边形的费用是dp[i][j]=max(dp[i][j], dp[i][k]+dp[i][k]+cost[i][k]+cost[k][j]),所有点对的cost可以先求出来。注意在计算dp[i][j]时,dp[i][k]和dp[k][j]必须先求出来。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <deque>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)<0?-(x):(x))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const double PI = acos(-1.0);
const int N=; struct node
{
int x,y;
node(){};
node(int x,int y):x(x),y(y){};
}Po[N], path[N];
int n, p, c[N][N], dp[N][N]; inline int cmp(node a,node b)
{
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
inline int cross(node A,node p1,node p2) //叉积,A是新来的点。若A在p1->p2左边,则结果为正。
{
return (p1.x-A.x)*(p2.y-A.y) - (p2.x-A.x)*(p1.y-A.y);
}
int get_cost(node a,node b){return abs(a.x+b.x)*abs(a.y+b.y)%p;} //在a和b之间切开的费用 int ConvexHull(node *u,int n,node *path) //求凸包,返回凸包中的点数
{
sort(u,u+n,cmp); //先按x再按y排序
int top=;
for(int i=; i<n; i++) //下凸包:从左到右
{
while(top> && cross(u[i],path[top-],path[top-])<= ) top--; //小于0,在右边
path[top++]=u[i];
}
int k=top;
for(int i=n-; i>=; i--) //上凸包:从右到左
{
while(top>k && cross(u[i],path[top-],path[top-])<= ) top--;
path[top++]=u[i];
}
if(n>) top--; //起点是重复了的,要去掉
return top;
} int cal()
{
if(n==) return ; //3点则0费用
memset(c,,sizeof(c));
for(int i=; i<n; i++) //任意两点间连一条边的费用c
for(int j=i+; j<n; j++)
c[i][j]=c[j][i]=get_cost( path[i], path[j] );
for(int i=; i<n; i++)
{
for (int j=; j<n; j++) dp[i][j]=INF;
dp[i][i+] = ; //相邻两个点不能连线,可视为费用为0.
}
for(int j=; j<n; j++) //升序
{
for(int i=j-; i>=; i--) //降序
{
for(int k=i+; k<j; k++) //枚举三角形顶点
dp[i][j]=min(dp[i][j], dp[i][k]+dp[k][j]+c[i][k]+c[k][j]);
}
}
return dp[][n-];
} int main()
{
//freopen("input.txt", "r", stdin);
while(~scanf("%d%d",&n,&p))
{
for(int i=; i<n; i++) scanf("%d%d",&Po[i].x,&Po[i].y);
if(ConvexHull(Po,n,path)<n) puts("I can't cut.");
else printf("%d\n", cal());
} return ;
}
AC代码
ZOJ 3537 Cake (区间DP,三角形剖分)的更多相关文章
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- 区间DP Zoj 3537 Cake 区间DP 最优三角形剖分
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我 ...
- zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- ZOJ 3537 Cake
区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include< ...
- ZOJ 3469Food Delivery(区间DP)
Food Delivery Time Limit: 2 Seconds Memory Limit: 65536 KB When we are focusing on solving prob ...
随机推荐
- CS231n 2016 通关 第四章-NN 作业
cell 1 显示设置初始化 # A bit of setup import numpy as np import matplotlib.pyplot as plt from cs231n.class ...
- SSIS 增量更新
本文转自 http://sqlblog.com/blogs/andy_leonard/archive/2007/07/09/ssis-design-pattern-incremental-loads. ...
- python--flask学习1
1 windows/unix得安装 http://www.pythondoc.com/flask-mega-tutorial/helloworld.html http://www.pythondoc. ...
- PHP实现人脸识别技术
这次人脸识别技术,是实现在微信端的,也就是说利用公众微信平台,调用第三的API来实现人脸识别这项技术的. 实现的思路: 首先呢,将收集的照片,建立一个照片库,然后利用在微信平台发送的照片,去到照片库进 ...
- Appium测试环境搭建实践
一.环境准备 1. JDK环境配置 a)下载并安装JDK http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138 ...
- PhpStrom之添加文件夹至左侧目录树
1.打开编辑器,点击工具栏 File,并选择Open (File -> Open) 2.选择需要添加的文件夹路径,点击 OK 3.点击OK后弹出下图窗口(第一个选项:Open in new wi ...
- 算法学习--Day7
今天多做一些杂题练习一下. 第一题: 题目描述 在情报传递过程中,为了防止情报被截获,往往需要对情报用一定的方式加密,简单的加密算法虽然不足以完全避免情报被破译,但仍然能防止情报被轻易的识别.我们给出 ...
- Unity2d 骨骼动画3:介绍Mecanim和脚本
http://bbs.9ria.com/thread-402710-1-1.html 在这个系列,我们将关注Unity引擎提供的基于骨骼动画工具.它的主要思想是为了把它应用到你自己的游戏来介绍和教基本 ...
- [Xcode 实际操作]二、视图与手势-(8)UIView视图的纹理填充
目录:[Swift]Xcode实际操作 本文将演示将导入的图片作为纹理,平铺整个屏幕. 往项目中导入一张图片. 点击底部左下角的图标->[Import]->选择需要导入的图片->[O ...
- redis连接错误
连接redis错误:ERR Client sent AUTH, but no password is set 2018-07-04 20:33 by robinli, 4367 阅读, 0 评论, 收 ...