luogu2766 最长不下降子序列问题
第一问DP水过。dp[i]代表以i结尾的最长不下降子序列长度。
二三问网络流。
第二问是说每个子序列不能重复使用某个数字。
把每个点拆成p(i),q(i)。连边。
要是dp[i]=1,连源,p(i)
要是dp[i]=s,连q(i),汇
要是i<j && num[i]<=num[j] && dp[i]+1==dp[j],连q(i),p(j)。
上述各边容量均为1。
为什么呢?
这实际上是建立分层图的思想,每一层里dp[i]都不一样,那么从源走到汇的路径必定为dp[i]递增的合法序列。
求最大流
第三问加上几条容量INF的边
求最大流
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n, a[505], dp[505], cnt, hea[1005], s, ss, tt, maxFlow, lev[1005];
const int oo=0x3f3f3f3f;
queue<int> d;
struct Edge{
int too, nxt, val;
}edge[60005];
inline int p(int x){
return x;
}
inline int q(int x){
return x+n;
}
void add_edge(int fro, int too, int val){
edge[cnt].nxt = hea[fro];
edge[cnt].too = too;
edge[cnt].val = val;
hea[fro] = cnt++;
}
void addEdge(int fro, int too, int val){
add_edge(fro, too, val);
add_edge(too, fro, 0);
}
bool bfs(){
memset(lev, 0, sizeof(lev));
d.push(ss);
lev[ss] = 1;
while(!d.empty()){
int x=d.front();
d.pop();
for(int i=hea[x]; i!=-1; i=edge[i].nxt){
int t=edge[i].too;
if(!lev[t] && edge[i].val>0){
d.push(t);
lev[t] = lev[x] + 1;
}
}
}
return lev[tt]!=0;
}
int dfs(int x, int lim){
if(x==tt) return lim;
int addFlow=0;
for(int i=hea[x]; i!=-1 && addFlow<lim; i=edge[i].nxt){
int t=edge[i].too;
if(lev[t]==lev[x]+1 && edge[i].val>0){
int tmp=dfs(t, min(lim-addFlow, edge[i].val));
edge[i].val -= tmp;
edge[i^1].val += tmp;
addFlow += tmp;
}
}
return addFlow;
}
void dinic(){
while(bfs()) maxFlow += dfs(ss, oo);
}
int main(){
memset(hea, -1, sizeof(hea));
cin>>n;
ss = 0; tt = n * 2 + 1;
for(int i=1; i<=n; i++){
scanf("%d", &a[i]);
dp[i] = 1;
}
for(int i=1; i<=n; i++)
for(int j=1; j<i; j++)
if(a[j]<=a[i])
dp[i] = max(dp[i], dp[j]+1);
for(int i=1; i<=n; i++)
s = max(s, dp[i]);
cout<<s<<endl;
for(int i=1; i<=n; i++){
addEdge(p(i), q(i), 1);
if(dp[i]==1) addEdge(ss, p(i), 1);
if(dp[i]==s) addEdge(q(i), tt, 1);
for(int j=1; j<i; j++)
if(a[j]<=a[i] && dp[j]+1==dp[i])
addEdge(q(j), p(i), 1);
}
dinic();
cout<<maxFlow<<endl;
addEdge(p(1), q(1), oo);
addEdge(p(n), q(n), oo);
addEdge(ss, p(1), oo);
if(dp[n]==s) addEdge(q(n), tt, oo);
dinic();
cout<<maxFlow<<endl;
return 0;
}
luogu2766 最长不下降子序列问题的更多相关文章
- luogu2766 最长不下降子序列问题 DP 网络流
题目大意:给定正整数序列x1,...,xn .(1)计算其最长不下降子序列的长度s.(不一定是否连续)(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列.(序列内每一个元素不可重复)(3) ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- tyvj 1049 最长不下降子序列 n^2/nlogn
P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列//序列dp
最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...
- 【tyvj】P1049 最长不下降子序列
时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数 第二行n个数 输出格式 最长不下降子序列的长度 测 ...
- hdu 4604 Deque(最长不下降子序列)
从后向前对已搜点做两遍LIS(最长不下降子序列),分别求出已搜点的最长递增.递减子序列长度.这样一直搜到第一个点,就得到了整个序列的最长递增.递减子序列的长度,即最长递减子序列在前,最长递增子序列在后 ...
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
随机推荐
- CF1168A Increasing by Modulo
思路: 首先得做个转化,如果某个解法最终分别对a[i](i = 1, 2, ..., n)做了b[i](i = 1, 2, ..., n)次加1再取余的运算,那么可以等价地构造出x次(x = max( ...
- css hack 浏览器携带自身特有的属性 (二)
css hack 浏览器携带自身特有的属性,才是我们真正要解决的css 兼容问题. 这里只是分享思路. 举例子: 1 outline,尤其是一些 自带继承特性的属性.这里指的是 隐性的inherite ...
- Android 设置资源字体,屏幕截图
字体设置 将下载的资源字体放在assets中, 引用设置 edit..setTypeface(Typeface.createFromAsset(getAssets(), "字体名.ttf&q ...
- Android的bitmap和优化
内存管理是个永恒的话题! 内存溢出:就是分配的内存不足以放下数据项序列.如在一个域中输入的数据超过了它的要求就会引发数据溢出问题,多余的数据就可以作为指令在计算机上运行.就是你要求分配的内存超出了系统 ...
- Jquery 如何获取表单中的全部元素的值
1.使用var formData = $(formId).serialize()获取:获取数据的格式为url参数形式的字符串.例如:id=100&name=张三 2.服务器端使用parse ...
- Python +selenium之设置元素等待
注:本文转载http://www.cnblogs.com/mengyu/p/6972968.html 当浏览器在加载页面时,页面上的元素可能并不是同时被加载完成,这给元素的定位增加了困难.如果因为在加 ...
- JavaScript_6_函数
函数是由事件驱动的或者当它被调用执行的可重复使用的代码块 调用带参数的函数 带有返回值的函数 <!DOCTYPE html> <html> <head> <t ...
- (六)VMware Harbor简单使用
VMware Harbor简单使用 1. 登陆: [用户:admin , 密码:Harbor12345]配置文件里设置的 登陆后的界面: 2. 用户管理: 2.1 新近用户 3. 仓库管理: 3.1 ...
- Memcached笔记之分布式算法
1.根据余数进行分散:离散度高,但是增加或者移除服务器的时候,缓存充足的代价非常大.添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器,从而音像缓存的命中率. 2.Consistent ...
- javaweb基础(18)_jsp属性范围
所谓的属性范围就是一个属性设置之后,可以经过多少个其他页面后仍然可以访问的保存范围. 一.JSP属性范围 JSP中提供了四种属性范围,四种属性范围分别指以下四种: 当前页:一个属性只能在一个页面中取得 ...