卷积的妙用,显然我们可以求出所有符合条件的右端点的和,然后减去左端点的和。

就是最后的答案。然后做一次前缀和,然后就变成了统计差是一个定值的情况。

令$A(s[i])++$ $B(s[i])+=i$

然后卷积一次就可以了,然后用后半部分减去前半部分即可。

并不需要两次FFT

然后发现$0$的情况会导致重叠。所以特判就好了。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define double long double
#define maxn 400005 struct Complex{
double x,y;
Complex () {}
Complex (double _x,double _y) {x=_x;y=_y;}
Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);}
Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);}
Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);}
void init(){x=0;y=0;}
}A[maxn],B[maxn],C[maxn],ans[maxn]; int t,n,a[maxn],sum,rev[maxn],m,len,top;
const double pi=acos(-1.0); void FFT(Complex * x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
for (int m=2;m<=n;m<<=1)
{
Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m));
for (int i=0;i<n;i+=m)
{
Complex w=Complex(1.0,0);
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
x[i+j]=u+v;x[i+j+(m>>1)]=u-v;
w=w*wn;
}
}
}
} int main()
{
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);int flag=1,cnt=0;ll ans0=0;
F(i,1,n){scanf("%d",&a[i]);if(a[i]==0&&flag)cnt++;else{F(i,1,cnt) ans0+=(ll)i*(cnt-i+1);cnt=0;}a[i]+=a[i-1];}
F(i,1,cnt) ans0+=(ll)i*(cnt-i+1);cnt=0;
sum=a[n];top=n;a[0]=0;n=2*(sum+1)+3;m=1;len=0;while (m<=n) m<<=1,len++;n=m;
F(i,0,n-1){int ret=0,t=i;F(j,1,len)ret<<=1,ret|=t&1,t>>=1;rev[i]=ret;}
F(i,0,n-1) A[i].init(),B[i].init(),ans[i].init();F(i,0,top) A[sum-a[i]].x+=1.0,B[a[i]].x+=1.0*i;
FFT(A,n,1);FFT(B,n,1);F(i,0,n-1)C[i]=A[i]*B[i];FFT(C,n,-1);F(i,0,n-1)C[i].x=C[i].x/n;
F(i,0,sum) ans[i].x+=C[sum+i].x-C[sum-i].x;
printf("%lld\n",ans0);F(i,1,sum) printf("%lld\n",(ll)(ans[i].x+0.5));
}
}

  

HDU 5307 He is Flying ——FFT的更多相关文章

  1. FFT(快速傅里叶变换):HDU 5307 He is Flying

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8IAAAPeCAIAAABInTQaAAAgAElEQVR4nOy9fZReVXk3vP8ia+HqCy

  2. HDU 5307 He is Flying (生成函数+FFT)

    题目传送门 题目大意:给你一个长度为$n$的自然数序列$a$,定义一段区间的权值为这一段区间里所有数的和,分别输出权值为$[0,\sum a_{i}]$的区间的长度之和 想到了生成函数的话,这道题并不 ...

  3. HDU - 5307 :He is Flying (分治+FFT)(非正解)

    JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has ...

  4. HDU 5515 Game of Flying Circus 二分

    Game of Flying Circus Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem ...

  5. HDU 5763 Another Meaning(FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5763 [题目大意] 给出两个串S和T,可以将S串中出现的T替换为*,问S串有几种表达方式. [题解 ...

  6. hdu 4656 Evaluation [任意模数fft trick]

    hdu 4656 Evaluation 题意:给出\(n,b,c,d,f(x) = \sum_{i=1}^{n-1} a_ix^i\),求\(f(b\cdot c^{2k}+d):0\le k < ...

  7. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  8. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

  9. hdu 4609 3-idiots(快速傅里叶FFT)

    比较裸的FFT(快速傅里叶变换),也是为了这道题而去学的,厚的白书上有简单提到,不过还是推荐看算法导论,讲的很详细. 代码的话是照着别人敲的,推荐:http://www.cnblogs.com/kua ...

随机推荐

  1. OneNote- 面经

  2. WP Mail SMTP插件解决Contact Form 7表单提交失败问题

    WP Mail SMTP插件解决Contact Form 7表单提交失败问题 WP Mail SMTP是一款非常优秀的解决WordPress主机因为不支持或者是禁用了mail()函数,导致无法实现在线 ...

  3. c++ question 003 求两数大者?

    #include <iostream>using namespace std; int main(){ //求两数中的大者? int a,b; cin>>a>>b; ...

  4. React 服务端渲染最佳解决方案

    最近在开发一个服务端渲染工具,通过一篇小文大致介绍下服务端渲染,和服务端渲染的方式方法.在此文后面有两中服务端渲染方式的构思,根据你对服务端渲染的利弊权衡,你会选择哪一种服务端渲染方式呢? 什么是服务 ...

  5. 深入浅出:了解for循环中保留i值得方法

    一.保留i值  通常情况下,因为一些效果我们需要获取到for循环中的i的值,但是往往拿到的都是最后一个i的值.下面介绍几种方法可以获取到i的值 1.自定义属性: arr[i].index = i; 以 ...

  6. [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏

    设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...

  7. node 日志分割-pm2-logrotate

    使用pm2-logrotate进行pm2日志切割,测试是按照文件大小1k切割: 安装 pm2 install pm2-logrotate 设置 重启 截图 截图是按照文件大小分割,如果文件小于设置分割 ...

  8. 【jenkins】jenkins服务器与svn服务器时间不一致出现的问题

    问题描述: svn提交了一次更新包,到了jenkins提交更新的时候,第一次代码没有生效,然后重新提交了一次,第二次才生效. 问题排查: 1.首先第一反应比对了下两次更新的包文件是否一致,然后发现大小 ...

  9. 【CodeBase】通过层级键在多维数组中获取目标值

    通过层级键在多维数组中获取目标值 /* *Author : @YunGaZeon *Date : 2017.08.09 *param data : Data Array *param keys : K ...

  10. url地址形式的传参格式拼接

    例子一: var gid=pid=pizi=sn=newsn=sn_price=city_id=123; var params = 'gid=' +123; params += '&pid=' ...