求最长回文串。把原串翻转后,加在原串后面,中间插入一个辨别字符。然后求SA,Height。然后枚举每个字母作为回文串中心,分长度为奇数和偶数去讨论:奇数求 suffix(i)和suffix(n-i+1)的最长公共前缀,偶数则求suffix(i)和suffix(n-i+2)(当然,i=1时不成立) 。然后问题就是求最长公共前缀了,转换为RMQ问题,O(nlogn)预处理,O(1)询问即可.

 const maxn=;

 var
x,y,rank,sa,h,c:array[..maxn] of longint;
s:ansistring;
f:array[..maxn,..] of longint;
t,q,n:longint; function max(x,y:longint):longint; begin if x>y then exit(x) else exit(y); end;
function min(x,y:longint):longint; begin if x<y then exit(x) else exit(y); end;
procedure swap(var x,y:longint);var tmp:longint; begin tmp:=x; x:=y;y:=tmp; end;
procedure make;
var i,j,p,tot:longint;
begin
p:=;
while p<n do
begin
fillchar(c,sizeof(c),);
for i:= to n-p do y[i]:=rank[i+p];
for i:= n-p+ to n do y[i]:=;
for i:= to n do inc(c[y[i]]);
for i:= to n do inc(c[i],c[i-]);
for i:= to n do
begin
sa[c[y[i]]]:=i;
dec(c[y[i]]);
end;
fillchar(c,sizeof(c),);
for i:= to n do x[i]:=rank[i];
for i:= to n do inc(c[x[i]]);
for i:= to n do inc(c[i],c[i-]);
for i:= n downto do
begin
y[sa[i]]:=c[x[sa[i]]];
dec(c[x[sa[i]]]);
end;
for i:= to n do sa[y[i]]:=i;
tot:=;
rank[sa[]]:=;
for i:= to n do
begin
if (x[sa[i]]<>x[sa[i-]]) or (x[sa[i]+p]<>x[sa[i-]+p]) then inc(tot);
rank[sa[i]]:=tot;
end;
p:=p<<;
end;
end; procedure makeh;
var i,j,p:longint;
begin
h[]:=; p:=;
for i:= to n do
begin
p:=max(p-,);
if rank[i]= then continue;
j:=sa[rank[i]-];
while (i+p<=n) and (j+p<=n) and (s[i+p]=s[j+p]) do inc(p);
h[rank[i]]:=p;
end;
// for i:= to n do write(h[i],' ');
// writeln;
end; procedure rmq;
var i,j:longint;
begin
fillchar(f,sizeof(f),$7f);
for i:= to n do f[i,]:=h[i];
for i:= to trunc(ln(n)/ln()) do
for j:= to n-<<i+ do
f[j,i]:=min(f[j,i-],f[j+<<(i-),i-]);
end; function lcp(x,y:longint):longint;
var t:longint;
begin
x:=rank[x]; y:=rank[y];
if x>y then swap(x,y);
if x<y then x:=x+;
t:=trunc(ln(y-x+)/ln());
exit(min(f[x,t],f[y-<<t+,t]));
end; procedure init;
var i,j,tot:longint;
ch:char;
begin
readln(s);
s:=s+'#';
for i:= length(s)- downto do s:=s+s[i];
n:=length(s);
for i:= to n do x[i]:=ord(s[i]);
fillchar(c,sizeof(c),);
for i:= to n do inc(c[x[i]]);
for i:= to do inc(c[i],c[i-]);
for i:= to n do
begin
sa[c[x[i]]]:=i;
dec(c[x[i]]);
end;
rank[sa[]]:=;
tot:=;
for i:= to n do
begin
if x[sa[i]]<>x[sa[i-]] then inc(tot);
rank[sa[i]]:=tot;
end;
make;
makeh;
rmq;
end; procedure solve;
var ans,st,i,k:longint;
begin
ans:=;st:=;
for i:= to n do
begin
k:=lcp(i,n-i+);
if k*->ans then
begin
st:=i-k+;
ans:=k*-;
end;
if i> then
begin
k:=lcp(i,n-i+);
if k*>ans then
begin
st:=i-k;
ans:=k*;
end;
end;
end;
for i:= st to st+ans- do write(s[i]);
end; Begin
init;
solve;
End.

【SPOJ1297】Palindrome (SA+RMQ)的更多相关文章

  1. 【CF932G】Palindrome Partition(回文树,动态规划)

    [CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...

  2. 【BZOJ3489】A simple rmq problem(KD-Tree)

    [BZOJ3489]A simple rmq problem(KD-Tree) 题面 BZOJ 题解 直接做肯定不好做,首先我们知道我们是一个二维平面数点,但是限制区间只能出现一次很不好办,那么我们给 ...

  3. 【CF932G】Palindrome Partition 回文自动机

    [CF932G]Palindrome Partition 题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_ ...

  4. 【BZOJ3489】A simple rmq problem

    [BZOJ3489]A simple rmq problem 题面 bzoj 题解 这个题不强制在线的话随便做啊... 考虑强制在线时怎么搞 预处理出一个位置上一个出现的相同数的位置\(pre\)与下 ...

  5. 【BZOJ3489】A simple rmq problem kd-tree

    [BZOJ3489]A simple rmq problem Description 因为是OJ上的题,就简单点好了.给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过 ...

  6. 【题解】Palindrome pairs [Codeforces159D]

    [题解]Palindrome pairs [Codeforces159D] 传送门:\(Palindrome\) \(pairs\) \([CF159D]\) [题目描述] 给定一个长度为 \(N\) ...

  7. 【BZOJ1067】[SCOI2007]降雨量 RMQ+特判

    [BZOJ1067][SCOI2007]降雨量 Description 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年 ...

  8. 【LeetCode】Palindrome Partitioning 解题报告

    [题目] Given a string s, partition s such that every substring of the partition is a palindrome. Retur ...

  9. 【BZOJ】【3489】A simple rmq problem

    KD-Tree(乱搞) Orz zyf教给蒟蒻做法 蒟蒻并不会这题正解……(可持久化树套树?...Orz 对于每个点,我们可以求出pre[i],nex[i],那么询问的答案就是:求max (a[i]) ...

随机推荐

  1. Zend Studio 12.5.1原版安装破解

    安装官方Zend Studio 12.5.1原版,关闭zend studio,然后将破解补丁com.zend.verifier_12.5.1.v20150514-2003.jar覆盖到 安装目录\pl ...

  2. Python监控日志中经常访问的ip

    一.需求:每分钟检查一次日志文件,如果这一分钟内同一个ip请求次数超过200次,加入黑名单 1.日志文件中,每一行的格式为:XXX.XXX.XXX.XXX - - [04/Jun/2017:05:25 ...

  3. Java之JDK的下载与安装,java环境变量的配置,Editplus的下载与使用

    JRE(Java Runtime Environment Java运行环境) 包括Java虚拟机(JVM Java Virtual Machine)和Java程序所需的核心类库等,如果想要运行一个开发 ...

  4. C++ 学习笔记 (八)重载 重写 重定义以及名字覆盖

    学习C++必定会遇到重载.重写.重定义.概念的东西多也是学习C++蛋疼之处,但是还是得弄懂,学懂了也就不觉得多了. 概念,特点: 重载: 直白点说就是函数名字相同,传参的个数,类型不一样.判断标准在于 ...

  5. NOIP2018 全国热身赛 第二场 (不开放)

    NOIP2018 全国热身赛 第二场 (不开放) 题目链接:http://noi.ac/contest/26/problem/60 一道蛮有趣的题目. 然后比赛傻逼了. 即将做出来的时候去做别的题了. ...

  6. MySQL解决中文编码问题

    转载组员博客 地址:MySQL解决中文编码问题

  7. 动态规划、记忆化搜索:HDU1978-How many ways

    Problem Description 这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m).游戏的规则描述如下: 1.机器人一开始在棋盘的起始点并有起始点所标 ...

  8. Maya

    建立酒杯的方法(CV曲线) surface(曲面)-- creat cv curve tool-- control vertex(调整图形)[再次creat cv建立厚度,只需要建立酒杯的上口]--- ...

  9. 非负矩阵分解(NMF)原理及算法实现

    一.矩阵分解回想 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品(评分矩阵),记为能够将其分解为两个或者多个矩阵的乘积,如果分解成两个矩阵和 .我们要使得矩阵和 的乘积能够还 ...

  10. MySQL基础6-分组查询

    1.分组函数 需求20:查询所有商品平均零售价SELECT AVG(salePrice) FROM product 需求21:查询商品总记录数SELECT COUNT(id) count FROM p ...