[codevs2185]最长公共上升子序列

试题描述

熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目。小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了。
小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了。
奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串。不过,只要告诉奶牛它的长度就可以了。

输入

第一行N,表示A,B的长度。
第二行,串A。
第三行,串B。

输出

输出长度。

输入示例


输出示例


数据规模及约定

1<=N<=3000,A,B中的数字不超过maxlongint

题解

首先果断想一个 n2logn 的做法:令 f(i, j) 表示考虑了第一个串的前 i 位,第二个串的前 j 位,最长公共上升子序列的末位是 B[j] 的最长公共上升子序列长度;那么如果 A[i] = B[j],就是所有满足 B[k] < B[j] 且 k < j 的 f(i-1, k) 转移到 f(i, j),否则 f(i, j) = f(i-1, j),于是我们可以随着 j 的递增将所有 f(i-1, j) 扔进树状数组,每次转移时查询一下前缀最大值就好了。

然后发现 n2 做法更 SB:由于我们每次在树状数组上询问的前缀都是 [1, A[i] ](因为只有当 A[i] = B[j] 时才会有转移),所以直接用一个变量存满足 B[k] < A[i] 且 k < j 的 f(i-1, k) 的最大值就好了。注意这里要用滚动数组,滚动数组用起来很方便,因为所有没更新过的 f(i, j) 就等于 f(i-1, j),所以 i 每加 1,直接在上一个版本的滚动数组上做就行了。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 3010 int n, A[maxn], B[maxn], f[maxn]; int main() {
n = read();
for(int i = 1; i <= n; i++) A[i] = read();
for(int i = 1; i <= n; i++) B[i] = read(); int ans = 0;
for(int i = 1; i <= n; i++) {
int mx = 0;
for(int j = 1; j <= n; j++) {
if(B[j] < A[i]) mx = max(mx, f[j]);
if(A[i] == B[j]) f[j] = max(f[j], mx + 1);
ans = max(ans, f[j]);
}
} printf("%d\n", ans); return 0;
}

当然这题 n2logn 也是能过的。据说有人 n3 大力过去了。。。

[codevs2185]最长公共上升子序列的更多相关文章

  1. 最长公共上升子序列(codevs 2185)

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了. 小沐沐说,对 ...

  2. 最长公共上升子序列(LCIS)

    最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...

  3. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  4. POJ 2127 最长公共上升子序列

    动态规划法: #include <iostream> #include <cstdio> #include <fstream> #include <algor ...

  5. [CodeForces10D]LCIS(最长公共上升子序列) - DP

    Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...

  6. 最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)

    lis: 复杂度nlgn #include<iostream> #include<cstdio> using namespace std; ],lis[],res=; int ...

  7. codevs 2185 最长公共上升子序列

    题目链接: codevs 2185 最长公共上升子序列codevs 1408 最长公共子序列 题目描述 Description熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升 ...

  8. [ACM_动态规划] UVA 12511 Virus [最长公共递增子序列 LCIS 动态规划]

      Virus  We have a log file, which is a sequence of recorded events. Naturally, the timestamps are s ...

  9. 动态规划——最长公共上升子序列LCIS

    问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1 ...

随机推荐

  1. URAL 2027 URCAPL, Episode 1 (模拟)

    题意:给你一个HxW的矩阵,每个点是一个指令,根据指令进行一系列操作. 题解:模拟 #include<cstdio> #include<algorithm> using nam ...

  2. Ubuntu 16.04 换国内源

    官方渠道,图形界面,操作简单,可以说对新手及其友好!! 依次打开:搜索,软件与更新,第一个和第三个勾上,下载自,其它,然后在中国条目下选择你想使用的镜像站点,然后点“选择服务器”,然乎点击“关闭”,选 ...

  3. 跑superpixel的程序

    知乎上对superpixel的讲解还不错:https://www.zhihu.com/question/27623988 superpixel的算法有很多,opencv中也包含了很多,我找了一个比较经 ...

  4. GC执行finalize的过程以及对象的一次自我拯救

    参考资料:深入理解java虚拟机 /** * 此代码演示了两点: * 1.对象可以在被GC时自我拯救 * 2.这种自救的机会只有一次,因为一个对象的finalize()方法只会被系统自动调一次 */ ...

  5. Java中的List接口特有的方法

    import java.util.ArrayList; import java.util.List; /* List接口中特有方法: 添加 add(int index, E element) addA ...

  6. 接口的多态使用; 接口应用实例:U盘、打印机可以使用共同的USB接口,插入到电脑上实现各自的功能。

    接口的多态使用 接口应用实例:U盘.打印机可以使用共同的USB接口,插入到电脑上实现各自的功能.

  7. iOS 骰子战争 Dice Wars

    占坑 这个游戏之前在网页端玩过,App Store 上没有搜到特别好的,想自己做个类似的iOS APP 游戏 目测实现难度适中,可玩性较高

  8. linux下libnet编程 亲自测试可用

    linux下libnet编程 亲自测试可用 亲自测试  如果build包的时候 只要把类型改了 就能改成相应的协议. 0x0800 ip 0x0806 arp 0x86DD    IPv6 0x86e ...

  9. pandas中层次化索引与切片

    Pandas层次化索引 1. 创建多层索引 隐式索引: 常见的方式是给dataframe构造函数的index参数传递两个或是多个数组 Series也可以创建多层索引 Series多层索引 B =Ser ...

  10. pycharm安装 suds模块报错:AttributeError: module 'pip' has no attribute 'main'

    需求:安装suds模块 遇到的问题: 一.报错信息:[file][Default Settint]---Project Interpreter 点击 搜索suds安装模块报错 解决:依据上图提示找到C ...