http://www.lydsy.com/JudgeOnline/problem.php?id=1911 (题目链接)

题意

  给出一个序列,将序列分成连续的几段,每段的价值为a*s*s+b*s+c,其中a,b,c为给定常数,s为这一段中所有数之和。求最大价值和。

Solution

  斜率优化。

  dp方程:$${f[i]=max(f[j]+a*(s[i]-s[j])^2+b*(s[i]-s[j])+c)}$$

  其中${s[i]}$为前缀和,${f[i]}$表示从1~i的最大价值。

  斜率式:$${s[i]*(2*a*s[j])+f[i]=(f[j]-b*s[j]+a*s[j]^2)+a*s[i]^2+b*s[i]+c}$$

  所以决策${j}$映射到平面直角坐标系上就是:${(2*a*s[j],f[j]-b*s[j]+a*s[j]^2)}$。斜率:${s[i]}$为正且单增;横坐标${2*a*s[j]}$单减(${a}$小于0,${s[j]}$单增),所以单调队列里面的点长成这样:

细节

  开long long。

代码

  1. // bzoj1911
  2. #include<algorithm>
  3. #include<iostream>
  4. #include<cstdlib>
  5. #include<cstring>
  6. #include<cstdio>
  7. #include<cmath>
  8. #define LL long long
  9. #define inf 1e18
  10. #define Pi acos(-1.0)
  11. #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
  12. using namespace std;
  13.  
  14. const int maxn=1000010;
  15. LL f[maxn],s[maxn],a,b,c;
  16. int n,q[maxn];
  17.  
  18. double slope(int i,int j) {
  19. return (double)((f[i]-b*s[i]+a*s[i]*s[i])-(f[j]-b*s[j]+a*s[j]*s[j]))/(double)((2*a*s[i])-(2*a*s[j]));
  20. }
  21. int main() {
  22. scanf("%d",&n);
  23. scanf("%lld%lld%lld",&a,&b,&c);
  24. for (int i=1;i<=n;i++) scanf("%lld",&s[i]),s[i]+=s[i-1];
  25. int l=1,r=1;q[1]=0;
  26. for (int i=1;i<=n;i++) {
  27. while (l<r && slope(q[l],q[l+1])<=s[i]) l++;
  28. f[i]=f[q[l]]+a*(s[i]-s[q[l]])*(s[i]-s[q[l]])+b*(s[i]-s[q[l]])+c;
  29. while (l<r && slope(q[r-1],q[r])>slope(q[r],i)) r--;
  30. q[++r]=i;
  31. }
  32. printf("%lld",f[n]);
  33. return 0;
  34. }

  

【bzoj1911】 Apio2010—特别行动队的更多相关文章

  1. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  2. BZOJ1911 [Apio2010]特别行动队 【斜率优化】

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 5005  Solved: 2455 [Submit][Sta ...

  3. [bzoj1911][Apio2010]特别行动队

    Description 有个元素,可以将个元素分成多组,每组的元素编号必须是连续的. 设每组的为,则每组的价值公式为. 求最大价值和. Input 输入由三行组成. 第一行包含一个整数,表示士兵的总数 ...

  4. BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...

  5. 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)

    bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...

  6. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  7. [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】

    题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...

  8. bzoj1911 [Apio2010]特别行动队commando

    题目链接 斜率优化 #include<cstdio> #include<cstdlib> #include<string> #include<cstring& ...

  9. 2018.09.07 bzoj1911: [Apio2010]特别行动队(斜率优化dp)

    传送门 斜率优化dp经典题. 题目中说的很清楚,设f[i]表示前i个数分配出的最大值. 那么有: f[i]=max(f[j]+A∗(sum[i]−sum[j])2+B∗(sum[i]−sum[j])+ ...

  10. BZOJ1911: [Apio2010]特别行动队(dp 斜率优化)

    题意 题目链接 Sol 裸的斜率优化,注意推导过程中的符号问题. #include<bits/stdc++.h> #define Pair pair<int, int> #de ...

随机推荐

  1. oracle 事务总结

    用了这么长时间的oracle,该总结一下所得了 1,事务 事务用于保证数据的一致性, 它由一组相关的 dml语句组成, 该组的dml(数据操作语言,增删改,没有查询)语句要么全部成功,要么全部失败,比 ...

  2. KeyBord事件从Activtiy层往下分发详细过程代码示例

    step1:调用Activity成员函数dispatchKeyEvent public boolean dispatchKeyEvent(KeyEvent event) { // Let action ...

  3. spring 3.2.x + struts2 + mybatis 3.x + logback 整合配置

    与前面的一篇mybatis 3.2.7 与 spring mvc 3.x.logback整合 相比,只是web层的MVC前端框架,从spring mvc转换成struts 2.x系列,变化并不大 一. ...

  4. windows7下启动mysql服务出现服务名无效

    出现提示: WIN 7 cmd命令行下,net start mysql,出现 服务名无效提示: 问题原因: mysql服务没有安装. 解决办法: 在 mysql bin目录下 以管理员的权限 执行 m ...

  5. PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...

  6. bindService初步了解

    bindService的使用: 当需要调Service里面的方法时,可以用bindService() 首先定义一个类继承于Service,然后配置Manifest.xml文件 public class ...

  7. Collection中list集合的应用常见的方法

    集合 : 用存放对象的容器(集合)     Collection : 跟接口 : 单列集合          ---> List :有序的 ,元素是可以重复的.          ---> ...

  8. springMvc静态资源拦截问题

    测试的时候发现:如果直接访问web项目的html等静态资源,不能访问 原因如下: 当web.xml中url-pattern配置为"/"时,会导致系统中的静态资源被拦截 如何解决: ...

  9. HIbernate的对象状态

    *临时状态对象: session中没有缓存,且在数据库中没有对应数据. User user1=new User(null,"c50",18); *持久化状态对象: session中 ...

  10. Nginx之负载均衡服务器揭秘

    Nginx代理服务器, 一次性代理多台后端机器, 利用负载算法, 决定将当前请求传递给某台服务器执行. 有哪些后台服务器?例如微软的IIS,Apache,Nginx 负载算法是什么? 加权轮询. ng ...