【BZOJ】[Usaco2010 Mar]gather 奶牛大集会

Description

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。

Input

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

Output

* 第一行:一个值,表示最小的不方便值。

Sample Input

5
1
1
0
0
2
1 3
1
2 3 2
3 4 3
4 5 3

Sample Output

15
题解:求树的核心,先求出以根节点为核心的总代价,再一步一步向下移动,用当前节点的总代价更新答案。挺水的。

#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int maxn=100010;
typedef long long ll;
int n,cnt;
int head[maxn],to[maxn<<1],fa[maxn],next[maxn<<1];
ll sum,s[maxn],val[maxn<<1],ans,now;
int readin()
{
int ret=0; char gc;
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
void add(int a,int b,int c)
{
to[cnt]=b;
val[cnt]=c;
next[cnt]=head[a];
head[a]=cnt++;
}
void dfs(int x)
{
for(int i=head[x];i!=-1;i=next[i])
{
if(to[i]!=fa[x])
{
fa[to[i]]=x;
dfs(to[i]);
s[x]+=s[to[i]];
now+=val[i]*s[to[i]];
}
}
}
void dfs2(int x)
{
for(int i=head[x];i!=-1;i=next[i])
{
if(to[i]!=fa[x])
{
ll tmp=now-(s[to[i]]*2-sum)*val[i]; //计算出以儿子节点为核心的总代价
if(tmp<=now)
{
swap(tmp,now); //如果比当前节点更优,就继续向下搜索
ans=min(ans,now);
dfs2(to[i]);
swap(tmp,now);
}
}
}
}
int main()
{
n=readin();
int i,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) s[i]=readin(),sum+=s[i];
for(i=1;i<n;i++)
{
a=readin(),b=readin(),c=readin();
add(a,b,c),add(b,a,c);
}
dfs(1);
ans=now;
dfs2(1);
printf("%lld",ans);
return 0;
}

【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP的更多相关文章

  1. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP

    [Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...

  2. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP + 带权重心

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  3. bzoj1827 [Usaco2010 Mar]gather 奶牛大集会

    不就是移一下树根,回溯一下吗? 诶?黄学长为什么可以直接找? 诶?这不是重心吗? YY了一下证明 很简单 由于重心max{sz[v]} <= sz[u] / 2的性质,可以证明每一步远离重心的移 ...

  4. BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP

    BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP 题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  5. 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 354[Sub ...

  6. 嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  7. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )

    选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...

  8. [Usaco2010 Mar]gather 奶牛大集会

    [Usaco2010 Mar]gather 奶牛大集会 题目 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 ...

  9. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会(树形dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1827 仔细想想就好了,, 每个点维护两个值,一个是子树的费用,一个是除了子树和自己的费用.都可以用d ...

随机推荐

  1. UML类图五种关系与代码的对应关系

    转: UML类图中的五种关系的耦合强弱比较:依赖<关联<聚合<组合<继承 一.依赖关系: (一)说明 虚线+箭头 可描述为:Uses a 依赖是类的五种关系中耦合最小的一种关系 ...

  2. iOS开发--UIDatePicker

    UIDatePicker 是一个控制器类,封装了 UIPickerView,但是他是UIControl的子类,专门用于接受日期.时间和持续时长的输入.日期选取器的各列会按照指定的风格进行自动配置,这样 ...

  3. 对象映射组件Tiny Mapper

    1.Tiny Mapper的简单实用例子 using System; using System.Collections.Generic; using System.Linq; using System ...

  4. JVM_Bind:8080 的解决办法【131031】

    出错情况:运行 Tomcat 时报错 含义:8080 位置显示的端口被其他进程占用 解决方法: 方法1: 开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID ...

  5. 安装oracle 12c RAC遇到的一些问题

    (1) 安装grid软件,停止在38%很长时间不动,日志显示正常   解决方法: 由于是虚拟机安装,设置的内存为600M,关闭虚拟机,把内存调成1GB,问题解决~在38%Linking RMAN Ut ...

  6. CodeForces 371D Vessels(树状数组)

    树状数组,一个想法是当往p注水时,认为是其容量变小了,更新时二分枚举,注意一些优化. #include<cstdio> #include<iostream> #include& ...

  7. 基于socket、多线程的客户端服务器端聊天程序

    服务器端: using System; using System.Windows.Forms; using System.Net.Sockets; using System.Net;//IPAddre ...

  8. Http 请求处理流程

    引言 我查阅过不少Asp.Net的书籍,发现大多数作者都是站在一个比较高的层次上讲解Asp.Net.他们耐心.细致地告诉你如何一步步拖放控件.设置控件属性.编写CodeBehind代码,以实现某个特定 ...

  9. android用户界面详尽教程实例

    android用户界面详尽教程实例 1.android用户界面之AlarmManager教程实例汇总http://www.apkbus.com/android-48405-1-1.html2.andr ...

  10. 遍历注册表回调函数(仿PCHunter CmpBack)

    遍历注册表回调函数(仿PCHunter CmpBack) typedef struct _CAPTURE_REGISTRY_MANAGER { PDEVICE_OBJECT deviceObject; ...