SPOJ TSUM Triple Sums(FFT + 容斥)
题目
Source
http://www.spoj.com/problems/TSUM/
Description
You're given a sequence s of N distinct integers.
Consider all the possible sums of three integers from the sequence at three different indicies.
For each obtainable sum output the number of different triples of indicies that generate it.
Constraints:
N <= 40000, |si| <= 20000
Input
The first line of input contains a single integer N.
Each of the next N lines contain an element of s.
Output
Print the solution for each possible sum in the following format:
sum_value : number_of_triples
Smaller sum values should be printed first.
Sample Input
5
-1
2
3
0
5
Sample Output
1 : 1
2 : 1
4 : 2
5 : 1
6 : 1
7 : 2
8 : 1
10 : 1
分析
题目大概说给n个数,从中选出三个数求和,问能到的各个和分别有几种取法能够得到?
这题很容易。。因为刚做过HDU4609。。
就是根据初始的序列构造出三个一样的多项式,指数表示数字,系数表示该数字出现次数。
然后三个多项式的乘积相当于表示有顺序有放回地取数字的结果。这个用FFT求。
不过这不是组合,可以用容斥原理去掉那些取法重复的。
即减去3种两个取同一边的情况,这个也用FFT求;然后加上三个都取同一边的情况,for一遍即可求;最后除以3的阶乘。
注意到时间好像比较紧,所以我做了些处理,比如三个多项式相乘直接三个点值相乘、避免重复的DFT过程。。
。。然后没想到居然暂时列第二,与第一同时间:
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXN 131072
const double PI=acos(-1.0); struct Complex{
double real,imag;
Complex(double _real=0,double _imag=0):real(_real),imag(_imag){}
Complex operator+(const Complex &cp) const{
return Complex(real+cp.real,imag+cp.imag);
}
Complex operator-(const Complex &cp) const{
return Complex(real-cp.real,imag-cp.imag);
}
Complex operator*(const Complex &cp) const{
return Complex(real*cp.real-imag*cp.imag,real*cp.imag+cp.real*imag);
}
void setValue(double _real=0,double _imag=0){
real=_real; imag=_imag;
}
}; int len;
Complex wn[MAXN+1],wn_anti[MAXN+1]; void FFT(Complex y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
for(int h=2; h<=len; h<<=1){
Complex Wn=(op==1?wn[h]:wn_anti[h]);
for(int i=0; i<len; i+=h){
Complex W(1,0);
for(int j=i; j<i+(h>>1); ++j){
Complex u=y[j],t=W*y[j+(h>>1)];
y[j]=u+t;
y[j+(h>>1)]=u-t;
W=W*Wn;
}
}
}
if(op==-1){
for(int i=0; i<len; ++i) y[i].real/=len;
}
} Complex A[MAXN],B[MAXN];
double ans[MAXN];
int s[40100],cnt[80100]; int main(){
for(int i=0; i<=MAXN; ++i){
wn[i].setValue(cos(2.0*PI/i),sin(2.0*PI/i));
wn_anti[i].setValue(wn[i].real,-wn[i].imag);
} int n;
scanf("%d",&n);
for(int i=0; i<n; ++i){
scanf("%d",&s[i]);
s[i]+=20000;
++cnt[s[i]];
} len=MAXN; for(int i=0; i<=40000; ++i){
B[i].setValue(cnt[i]);
}
FFT(B,1);
for(int i=0; i<MAXN; ++i){
A[i]=B[i]*B[i]*B[i];
}
FFT(A,-1);
for(int i=0; i<MAXN; ++i){
ans[i]=A[i].real;
} memset(cnt,0,sizeof(cnt));
for(int i=0; i<n; ++i){
++cnt[s[i]+s[i]];
}
for(int i=0; i<=80000; ++i){
A[i].setValue(cnt[i]);
}
for(int i=80001; i<MAXN; ++i){
A[i].setValue(0);
}
FFT(A,1);
for(int i=0; i<MAXN; ++i){
A[i]=A[i]*B[i];
}
FFT(A,-1);
for(int i=0; i<MAXN; ++i){
ans[i]-=3*A[i].real;
} for(int i=0; i<n; ++i){
++ans[s[i]+s[i]+s[i]];
} for(int i=0; i<MAXN; ++i){
long long tmp=(long long)(ans[i]/6.0+0.5);
if(tmp){
printf("%d : %lld\n",i-60000,tmp);
}
}
return 0;
}
SPOJ TSUM Triple Sums(FFT + 容斥)的更多相关文章
- spoj TSUM - Triple Sums fft+容斥
题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...
- BZOJ.3771.Triple(母函数 FFT 容斥)
题目链接 \(Description\) 有\(n\)个物品(斧头),每个物品价值不同且只有一件,问取出一件.两件.三件物品,所有可能得到的价值和及其方案数.\((a,b),(b,a)\)算作一种方案 ...
- 【BZOJ 3771】 3771: Triple (FFT+容斥)
3771: Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 547 Solved: 307 Description 我们讲一个悲伤的故事. ...
- BZOJ 3771: Triple(FFT+容斥)
题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- Spoj 8372 Triple Sums
题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数 Solution: 构造一个函数:\(A(x)=\s ...
- 【XSY2753】Lcm 分治 FWT FFT 容斥
题目描述 给你\(n,k\),要你选一些互不相同的正整数,满足这些数的\(lcm\)为\(n\),且这些数的和为\(k\)的倍数. 求选择的方案数.对\(232792561\)取模. \(n\leq ...
- SPOJ - TSUM 母函数+FFT+容斥
题意:n个数,任取三个加起来,问每个可能的结果的方案数. 题解:构造母函数ABC,比如现在有 1 2 3 三个数.则 其中B表示同一个数加两次,C表示用三次.然后考虑去重. A^3表示可重复地拿三个. ...
- SPOJ:Triple Sums(母函数+FFT)
You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...
随机推荐
- Centos以rpm方式进行安装MySql
安装过很多次mysql了,却没好好总结过,每次安装完了都忘,下次还要重新Google,这次总结下,自己以后也有的查. 1.安装采用的的rpm包的方式,安装前要先看系统内是否安装了旧版本的MySql和m ...
- 高校排名 加强版(codevs 2799)
题目描述 Description 大学排名现在已经非常流行.在网上搜索可查到关于中国大学排行的各个方面的消息. 我们知道,在一大学里通常都由许多不同的"系"(专业)组成,比如计算机 ...
- python基础——map/reduce
python基础——map/reduce Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Pro ...
- js对象的创建与原型总结
//1 新建对象 var box = new Object(); box.name = "lee"; box.age = 100; box.run = function(){ re ...
- 三、jQuery--jQuery基础--jQuery基础课程--第1章 初识jQuery
环境搭建 搭建一个jQuery的开发环境非常方便,可以通过下列几个步骤进行. 下载jQuery文件库 在jQuery的官方网站(http://jquery.com)中,下载最新版本的jQuery文件库 ...
- mysql常用表/视图管理语句
查看所有表 show tables; 查看表/视图结构 desc 表名/视图名: 查看建表过程 show create table 表名: 查看建视图过程 show create view 视图名 ...
- 【翻译十九】-java之执行器
Executors In all of the previous examples, there's a close connection between the task being done by ...
- Linux环境下stl库使用(vector)
step1: #include <iostream> #include <vector> #include <string> using namespace std ...
- NBU bplabel命令擦除磁帶數據
bplabel Linux系統,該命令位於NBU server的如下目錄:/usr/openv/netbackup/bin/admincmd bplabel – write NetBackup lab ...
- 檢查RAC狀態
1.使用srvctl工具檢查RAC當前配置和狀態 $ srvctl config database -h Displays the configuration for the database. Us ...