H. Bots
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn based. In each turn, one of the players makes a move (it doesn’t matter which player, it's possible that players turns do not alternate).

Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already in at any point in the past.

Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in the optimal winning strategy, both bots make exactly N moves each. But, in order to find the optimal strategy, their algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick the best sequence of moves.

They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game that need to be analyzed?

Input

The first and only line contains integer N.

  • 1 ≤ N ≤ 106
Output

Output should contain a single integer – number of possible states modulo 109 + 7.

Sample test(s)
Input
2
Output
19
Note

Start: Game is in state A.

  • Turn 1: Either bot can make a move (first bot is red and second bot is blue), so there are two possible states after the first turn – B and C.
  • Turn 2: In both states B and C, either bot can again make a turn, so the list of possible states is expanded to include D, E, F and G.
  • Turn 3: Red bot already did N=2 moves when in state D, so it cannot make any more moves there. It can make moves when in state E, F and G, so states I, K and M are added to the list. Similarly, blue bot cannot make a move when in state G, but can when in D, E and F, so states H, J and L are added.
  • Turn 4: Red bot already did N=2 moves when in states H, I and K, so it can only make moves when in J, L and M, so states P, R and S are added. Blue bot cannot make a move when in states J, L and M, but only when in H, I and K, so states N, O and Q are added.

Overall, there are 19 possible states of the game their algorithm needs to analyze.

#include<bits/stdc++.h>
using namespace std;
const int M = 2e6 + 10 ;
const int mod = 1e9 + 7 ;
int F[M] , Finv[M] , inv[M] ;
int n ; void table () {
inv[1] = 1 ;
for (int i = 2 ; i < M ; i ++) inv[i] = (mod-mod/i) *1ll* inv[mod%i] % mod ;
Finv[0] = F[0] = 1 ;
for (int i = 1 ; i < M ; i ++) {
F[i] = 1ll*F[i-1]*i%mod ;
Finv[i] = 1ll*Finv[i-1]*inv[i]%mod ;
}
} int comb (int n , int m) {
if (m < 0 || m > n) return 0 ;
return F[n] * 1ll * Finv[n-m] % mod * Finv[m] % mod ;
} int main () {
table () ;
//printf ("comb(3,3)=%d\n" , comb(3,3)) ;
//printf ("F[3] = %d , Finv[0] = %d , Finv[3] = %d\n" , F[3] , Finv[0] , Finv[3] ) ;
//printf ("Finv[2] = %d , inv[3] = %d\n" , Finv[2] , inv[3]) ;
scanf ("%d" , &n) ;
int num = 1 ;
int sum = 1 ;
for (int i = 1 ; i <= 2*n-1 ; i ++) {
num = (comb(i,n) + ((num-comb(i,n))*1ll*2%mod + mod)% mod ) % mod ;
sum = (sum+num) % mod ;
//printf ("num = %d , comb(%d,%d)=%d\n" , num , i , n , comb(i,n)) ;
}
printf ("%d\n" , (1ll*sum*2+1)%mod) ;
return 0 ;
}

首先把产生的树对半开,那么你很容易就可以发现层与层之间是存在递推关系的。

画过图你就会发现,当你从第x从画到第x+1层时,有先点扩展出了两个子节点,有些点只扩展出了一个节点。

进一步观察,你很容易想到,有些点之所以至扩展出一个节点,是因为对于这个支路它的其中一种颜色已经用完了。

而且你可以知道第x层的点数 的物理意义为,走x步的所有方案数。(一直x层共有k个点)

其中只会延伸出一个节点的点数为C(x,n) 。

所以x+1层的点数为 C(x,n) + (k-C(x,n)) * 2 ;

另外,linyujun发现了一个通式:

答案为C(2*(n+1) , n+1) - 1 ; (用眼睛看出来的,6666)

Bots(逆元,递推)的更多相关文章

  1. 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)

    题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...

  2. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  3. 求逆元的两种方法+求逆元的O(n)递推算法

    到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1( ...

  4. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

  5. 逆元 组合A(n,m) C(n,m)递推 隔板法

    求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...

  6. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  7. BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学

    原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...

  8. AGC001E BBQ Hard 组合、递推

    传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...

  9. [NOI2017]泳池——概率DP+线性递推

    [NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...

  10. [洛谷P4723]【模板】线性递推

    题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 题解:线性齐次递推,先见洛谷题解, ...

随机推荐

  1. androidstudio 常用快捷键

    ctrl+p  查看需要输入的函数列表 ctrl+h  查看继承关系 ctrl +w   选择一个,一行,一段. alter+enter  内容助理 ctrl+q   查看方法注解 相当于 hover ...

  2. 企业开发中选择logback而不是log4j的理由

    不知道看到这篇文章的Java工程师有没有考虑过这个问题:为什么在企业开发中会选择logback来记录日志,而不是log4j呢? 如果你以前没有考虑过这个问题,那么现在如果让你考虑一下,你可能觉的会是因 ...

  3. JAVA线程池的分析和使用

    1. 引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行.第三:提 ...

  4. HTML之:fieldset——一个不常用的HTML标签

    2016年4月14日17:10:02记录 一个不常用的HTML标签fieldset,不过我觉得比较有意思,其语法如下: <fieldset><legend>fieldset名称 ...

  5. jQuery ajax - serialize() 方法-输出序列化表单值

    定义和用法 serialize() 方法通过序列化表单值,创建 URL 编码文本字符串. 您可以选择一个或多个表单元素(比如 input 及/或 文本框),或者 form 元素本身. 序列化的值可在生 ...

  6. BZOJ3224 普通平衡树

    传送门: Treap 版本: //OJ 1999 //by Cydiater //2016.8.30 #include <iostream> #include <cstdio> ...

  7. GMap.NET使用一

    https://greatmaps.codeplex.com/releases/view/20235 从上面网站下载需要的组件dll,也可以下载源码研究,解压后有两个文件夹,如图1所示,根据不同的fr ...

  8. uC/OS-II实现TEST.MAK块

    ################################################################################                     ...

  9. jquery 中的 return false 不起作用

    jquery  中的 return false 不起作用 $(".lcId").each(function(e) { if ($(this).attr("checked& ...

  10. MySQL取每组的前N条记录

    一.对分组的记录取前N条记录:例子:取前 2条最大(小)的记录 .用子查询: SELECT * FROM right2 a WHERE > (SELECT COUNT(*) FROM right ...