H. Bots
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn based. In each turn, one of the players makes a move (it doesn’t matter which player, it's possible that players turns do not alternate).

Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already in at any point in the past.

Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in the optimal winning strategy, both bots make exactly N moves each. But, in order to find the optimal strategy, their algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick the best sequence of moves.

They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game that need to be analyzed?

Input

The first and only line contains integer N.

  • 1 ≤ N ≤ 106
Output

Output should contain a single integer – number of possible states modulo 109 + 7.

Sample test(s)
Input
2
Output
19
Note

Start: Game is in state A.

  • Turn 1: Either bot can make a move (first bot is red and second bot is blue), so there are two possible states after the first turn – B and C.
  • Turn 2: In both states B and C, either bot can again make a turn, so the list of possible states is expanded to include D, E, F and G.
  • Turn 3: Red bot already did N=2 moves when in state D, so it cannot make any more moves there. It can make moves when in state E, F and G, so states I, K and M are added to the list. Similarly, blue bot cannot make a move when in state G, but can when in D, E and F, so states H, J and L are added.
  • Turn 4: Red bot already did N=2 moves when in states H, I and K, so it can only make moves when in J, L and M, so states P, R and S are added. Blue bot cannot make a move when in states J, L and M, but only when in H, I and K, so states N, O and Q are added.

Overall, there are 19 possible states of the game their algorithm needs to analyze.

#include<bits/stdc++.h>
using namespace std;
const int M = 2e6 + 10 ;
const int mod = 1e9 + 7 ;
int F[M] , Finv[M] , inv[M] ;
int n ; void table () {
inv[1] = 1 ;
for (int i = 2 ; i < M ; i ++) inv[i] = (mod-mod/i) *1ll* inv[mod%i] % mod ;
Finv[0] = F[0] = 1 ;
for (int i = 1 ; i < M ; i ++) {
F[i] = 1ll*F[i-1]*i%mod ;
Finv[i] = 1ll*Finv[i-1]*inv[i]%mod ;
}
} int comb (int n , int m) {
if (m < 0 || m > n) return 0 ;
return F[n] * 1ll * Finv[n-m] % mod * Finv[m] % mod ;
} int main () {
table () ;
//printf ("comb(3,3)=%d\n" , comb(3,3)) ;
//printf ("F[3] = %d , Finv[0] = %d , Finv[3] = %d\n" , F[3] , Finv[0] , Finv[3] ) ;
//printf ("Finv[2] = %d , inv[3] = %d\n" , Finv[2] , inv[3]) ;
scanf ("%d" , &n) ;
int num = 1 ;
int sum = 1 ;
for (int i = 1 ; i <= 2*n-1 ; i ++) {
num = (comb(i,n) + ((num-comb(i,n))*1ll*2%mod + mod)% mod ) % mod ;
sum = (sum+num) % mod ;
//printf ("num = %d , comb(%d,%d)=%d\n" , num , i , n , comb(i,n)) ;
}
printf ("%d\n" , (1ll*sum*2+1)%mod) ;
return 0 ;
}

首先把产生的树对半开,那么你很容易就可以发现层与层之间是存在递推关系的。

画过图你就会发现,当你从第x从画到第x+1层时,有先点扩展出了两个子节点,有些点只扩展出了一个节点。

进一步观察,你很容易想到,有些点之所以至扩展出一个节点,是因为对于这个支路它的其中一种颜色已经用完了。

而且你可以知道第x层的点数 的物理意义为,走x步的所有方案数。(一直x层共有k个点)

其中只会延伸出一个节点的点数为C(x,n) 。

所以x+1层的点数为 C(x,n) + (k-C(x,n)) * 2 ;

另外,linyujun发现了一个通式:

答案为C(2*(n+1) , n+1) - 1 ; (用眼睛看出来的,6666)

Bots(逆元,递推)的更多相关文章

  1. 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)

    题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...

  2. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  3. 求逆元的两种方法+求逆元的O(n)递推算法

    到国庆假期都是复习阶段..所以把一些东西整理重温一下. gcd(a,p)=1,ax≡1(%p),则x为a的逆元.注意前提:gcd(a,p)=1; 方法一:拓展欧几里得 gcd(a,p)=1,ax≡1( ...

  4. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

  5. 逆元 组合A(n,m) C(n,m)递推 隔板法

    求逆元 https://blog.csdn.net/baidu_35643793/article/details/75268911 int inv[N]; void init(){ inv[] = ; ...

  6. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  7. BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学

    原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...

  8. AGC001E BBQ Hard 组合、递推

    传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...

  9. [NOI2017]泳池——概率DP+线性递推

    [NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...

  10. [洛谷P4723]【模板】线性递推

    题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 题解:线性齐次递推,先见洛谷题解, ...

随机推荐

  1. [转]如何启用Ubuntu的休眠模式

    大家都知道 Windows 有休眠模式,其实 Ubuntu 也有.休眠模式简单来说,就是可以在用户暂时离开时将内存中的所有内容都写入到硬盘当中,当用户下次开机时,就可以直接启动到上次保存的时间状态. ...

  2. 2-SAT 问题

    2-SAT 问题是k-SAT问题在k==2时的特殊情况,因为已经证明k>=3时的k-sat问题属于npc问题.所以在这里仅研究2-SAT的特殊情况.   何为2-sat问题? 简单地说就是有N个 ...

  3. BZOJ4445: [Scoi2015]小凸想跑步

    裸半平面交. 记得把P0P1表示的半平面加进去,否则点可能在多边形外. #include<bits/stdc++.h> #define N 100009 using namespace s ...

  4. 点亮第一个LED灯

    1.代码: #include <reg52.h> //<reg51.h>  包含52单片机寄存器库sbit led = P1^0;    //只有地址可以被8整除的 才可以用s ...

  5. 将文件路径以"\"隔开

    将文件路径以"\"隔开,这货搞了我一小时...C++返回一维数组,字符串数组还是要再看看 ]) { ; //string s_array[30]; //局部变量,如果使用retur ...

  6. MFC学习-第一课 MFC运行机制

    最近由于兴趣爱好,学习了孙鑫的MFC教程的第一课.看完视频了,自己便用visual studio 2010尝试了MFC编程,其中遇到了一些问题. 1.vs2010不像vs6.0那样可以新建一个空的MF ...

  7. VM安装linux

      看图简单流程即可.注意磁盘空间至少30G,实用oracle数据库时需要更大,可以后期增加.   静待安装完成即可.一定记得创建的用户名及密码,及root用户的密码.

  8. Java 命令行运行参数大全

    Java在运行已编译完成的类时,是通过java虚拟机来装载和执行的,java虚拟机通过操作系统命令JAVA_HOME"bin"java –option 来启动,-option为虚拟 ...

  9. yourphp的edit,updata,dele

    参考文件Yourphp\Lib\Action\User\PostAction.class.php public function add() { $form=new Form(); $form-> ...

  10. 用Open Live Account写博文的第一篇文章,立个flag

    在设置的时候出了点问题,还好有blog这种神器,直接上网址http://www.cnblogs.com/yishujun/p/5328617.html 高亮插件来自 http://www.cnblog ...