题目链接:http://vjudge.net/contest/141990#overview

题意是告诉你有n个命题,m条递推关系,表示某个命题可以推出另外一个命题。

现在问你至少在增加多少个递推关系可以保证所有命题两两互推。

把命题看成一个结点,推导看成有向边,就是n个结点,m 条有向边,要求添加尽量少的边,使得新图强连通。

首先找出强连通分量,把每个强连通分量缩成一个点,得到DAG。设有 a 个结点入度为 0 ,b 个结点出度为 0 ,max(a,b),就是答案。如下图:

入度为 0 的集合 为 1,出度为 0 的集合 为 2,要加两条红边才能 互相到达(强连通)。

先标记所有强连通图的入度出度 1 ,要是有点相同,标记为 0 ,统计 入度为 1 ,出度为 1 的个数。

如果原图只有一个强连通分量 ans = 0 不需要加边。

#include <bits/stdc++.h>
using namespace std; const int Maxn = + ;
vector<int> G[Maxn];
int pre[Maxn];
int lowlink[Maxn];
int sccno[Maxn];
int dfs_clock;
int scc_cnt; stack<int> S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u); for(int i=; i<G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u],lowlink[v]);
}
else if(!sccno[v])
{
lowlink[u] = min(lowlink[u],pre[v]);
}
} if(lowlink[u]==pre[u])
{
scc_cnt ++;
for(;;)
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x==u) break;
}
} } void find_scc(int n)
{
dfs_clock = scc_cnt = ;
memset(sccno,,sizeof(sccno));
memset(pre,,sizeof(pre)); for(int i=; i<n; i++)
{
if(!pre[i])
dfs(i);
} } int main()
{
int n,m;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=; i<n; i++)
G[i].clear(); for(int i=; i<m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
u--;
v--;
G[u].push_back(v);
} find_scc(n); int in0[Maxn];
int out0[Maxn];
for(int i=; i<=scc_cnt; i++)
{
in0[i] = ;
out0[i] = ;
} for(int u=; u<n; u++)
{
for(int i=; i<G[u].size(); i++)
{
int v = G[u][i];
if(sccno[u]!=sccno[v])
{
in0[sccno[v]] = ;
out0[sccno[u]] = ;
}
}
} int maxin = ,maxout = ; for(int i=; i<=scc_cnt; i++)
{
if(in0[i]) maxin ++;
if(out0[i]) maxout ++;
} int ans = max(maxin,maxout); if(scc_cnt==)
puts("");
else printf("%d\n",ans); }
return ;
}

LA 4287 等价性证明的更多相关文章

  1. LA 4287 等价性证明(强连通分量缩点)

    https://vjudge.net/problem/UVALive-4287 题意: 给出n个结点m条边的有向图,要求加尽量少的边,使得新图强连通. 思路:强连通分量缩点,然后统计缩点后的图的每个结 ...

  2. 2020-BUAA OO-面向对象设计与构造-HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况)

    HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况) 概要 我们知道,第三次作业里age上限变为2000,而如果缓存年龄的平方和,2000*2000*800 > 2147483647 ...

  3. DFA与NFA的等价性,DFA化简

    等价性 对于每个NFA M存在一个DFA M',使得L(M)=L(M')--------等价性证明,NFA的确定化 假定NFA M=<S, Σ, δ, S 0 , F>,我们对M的状态转换 ...

  4. 【软件构造】第三章第五节 ADT和OOP中的等价性

    第三章第五节 ADT和OOP中的等价性 在很多场景下,需要判定两个对象是否 “相等”,例如:判断某个Collection 中是否包含特定元素. ==和equals()有和区别?如何为自定义 ADT正确 ...

  5. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  6. Java中测试对象的等价性

    Java中用于测试对象的等价性有三个操作符:== , != 和 Equals() 对于基本类型即int,boolean, byte 等等来说,==和 != 比较的是 基本类型的内容,这和c.c++是一 ...

  7. Java中的equals和==的差别 以及Java中等价性和同一性的讨论

    ==对基本数据类型比较的是值,对引用类型比较的是地址 equals()比较的是对象的数据的引用 等价性原理: 自反性    x.equals(x)为true 对称性    x.equals(y) 为t ...

  8. 数据结构 《18》----RMQ 与 LCA 的等价性 (一)

    前言     RMQ: 数组 a0, a1, a2,..., an-1, 中求随意区间 a[i+1], a[i+2], ..., a[i+k] 的最小值     LCA: 求二叉树中两个节点的最低公共 ...

  9. 【转】Eric's并发用户数估算与Little定律的等价性

    转自:http://www.cnblogs.com/hundredsofyears/p/3360305.html 在国内性能测试的领域有一篇几乎被奉为大牛之作的经典文章,一个名叫Eric Man Wo ...

随机推荐

  1. html5用到的js

    1.Zepto.js 是专门为现代智能手机浏览器退出的 Javascript 框架, 拥有和jQuery相似的语法, 但是和jQuery相比下来, 他有很多优点, 大小方面 , 压缩后的 zepto. ...

  2. A trip through the Graphics Pipeline 2011_07_Z/Stencil processing, 3 different ways

    In this installment, I’ll be talking about the (early) Z pipeline and how it interacts with rasteriz ...

  3. 阿里云专有网络与弹性公网IP

    阿里云服务器经典网络和专有网络究竟有什么区别? 在用户提交订单购买阿里云ECS云服务器时,会面临怎样选择网络类型的烦恼,阿里云服务器定制购买时,网络类型里的经典网络和专有网络(VPC)是什么含义,该怎 ...

  4. thinkphp3.2 cli模式的正确使用方法

    最近要使用thinkphp3.2版本的cli模式,手动执的话没有问题,比如php /www/index.php home/article/get 这样没有问题,但是一般用cli模式都是定时任务比较多, ...

  5. iScroll.js几个问题及其解决办法

    1.在一个页面中需要点击tab切换,而且每个切换的内容都需要下拉刷新加载,这个时候需要在点击的时候用到myScroll.refresh();这个函数,刷新iScroll.js这个函数. 2.在页面中有 ...

  6. linux中ONBOOT=yes的含义

    在/etc/sysconfig/network-scripts/ifcfg-eth0(确认ONBOOT=yes),其中eth0是设备名 ONBOOT是指明在系统启动时是否激活网卡,只有在激活状态的网卡 ...

  7. linux下安装编译php的curl扩展

    curl扩展的位置(需要编译的版本)/root/install/php-5.5.24/ext/curl 1.进入对应的扩展目录 # cd /root/install/php-5.5.24/ext/cu ...

  8. 【转】HTTP 头部解释,HTTP 头部详细分析,最全HTTP头部信息

    HTTP 头部解释 ========================================================================================== ...

  9. Cross-Site Scripting(XSS)的类型

    本文源自: https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting 在原文理解上翻译为中文. 背景 本文描述多种不同类型的XSS攻击 ...

  10. 2016/12summary

    应用服务器处理业务逻辑,web服务器处理html文件.web服务器更加简单.应用服务器有tomcat,jboss,weblogic,web服务器有IIS,Apache. 徐总:core里面做业务逻辑, ...