Time complexity:

Binary search O(log2 n):

i=0.   n elements:         -------------------

i=1.   n/2 elements:                   ----------

i=2.   n/4 elements:                          -----

...

i=i.    n/2^i elements:                        -

进行n/2^i=1, i=log2 n 次,来达到只剩一个element.

1,Selection Sort

Steps:

from 0~n-1, select the minimum element[comparing n-1 times], swap it with the A[0].

from 1~n-1, select the minimum element[comparing n-2 times], swap it with the A[1].

...

So total comparison times: n-1+n-2+...+2+1 = n(n-1)/2=O(n^2).

2, Insertion Sort

Steps:

i, compare with j=0~i-1=0, if bigger than A[j], nothing changes; if smaller than A[j], A[j+1] = A[j], move A[i] to position j.

So total comparison times:  1+2+...+n-1=n(n-1)/2=O(n^2).

3, Merge 2 sorted arrays

像两叠放着的纸牌,最上面放着最小的牌,指针从上开始往下,注意的是两叠的高度不同,一叠到底以后只需考虑另一叠。

4, Bubble Sort

也是两层loop, 比较相邻两个element,如果前面大于后面,就swap,这样每一轮把最大的那个扔到末端。

public static void sort(int[] a) {

  for(int i = 0; i< a.length; i++) {

    for(int j = 0; j<a.length -1 - i; j++) {
      if(a[j] > a[j+1]) {
        int temp = a[j];
        a[j]= a[j+1];
        a[j+1] = temp;
    }}}
}

5, Quick Sort

Divide and Conquer, Recuisive, Complexity: O(nlogn), worst-case: O(n^2)[if you pick the pivot which is the biggest/smallest value in the array].

private static void quickSort2(int[] array, int low, int high) {
  int i = low, j= high;
  int mid = (low + high) /2;
  while(i<=j) {
    while(array[i] < array[mid]) i++;
    while(array[j] > array[mid]) j--;
    if(i<= j) {
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
      i++;  //Don't forget to increase/decrease index here
      j--;
    }
  }
  if(low < j) quickSort2(array, low, j);
  if(i < high) quickSort2(array, i, high);
}

6, Merge Sort

Worst-case and average are both: O(nlogn). 每层都比较n次,有logn层。

Use helplerArray to copy from, One method for divide and conquer, One method for merging lower part and higher part.

private void mergeSort(int low, int high) {
  if(low<high) {
    int middle = (low + high)/2;
    mergeSort(low, middle);
    mergeSort(middle +1, high);
    merge(low, middle, high);
  }
}
private void merge(int low, int middle, int high) {
  for(int i = low; i<= high; i++)
    helper[i] = this.numbers[i];
  int i = low;            //pointer i for low part of helper array
  int j = middle + 1;  //pointer j for higher part of helper array
  int k = low;           //pointer k for target array
  while(i<= middle && j<= high) {
    if(helper[i] < helper[j]) numbers[k++] = helper[i++];
    else numbers[k++] = helper[j++];
  }
  while(j<=high) numbers[k++] = helper[j++];
  while(i<=middle) numbers[k++] = helper[i++];
}

Steps: 1, private var int[] numbers, int[] helper; 2, private method mergeSort(int low, int high), 在这里做recursion,先mergeSort(low, mid)再mergeSort(mid+1, high); 3, private method merge(int low, int mid, int high),在这里先把low~high赋给helper array,然后开始比较.

7, Radix Sort O(n)

Radix Sort puts the elements in order by comparing the digits of the numbers. We should start sorting by comparing and ordering the one's digits:Now, we gather the sublists (in order from the 0 sublist to the 9 sublist) into the main list again:the sublists are created again, this time based on the ten's digit:Finally, the sublists are created according to the hundred's digit.

In the example above, the numbers were all of equal length, but many times, this is not the case. If the numbers are not of the same length, then a test is needed to check for additional digits that need sorting. This can be one of the slowest parts of Radix Sort, and it is one of the hardest to make efficient.

时间复杂度O(n*k),k是位数。k不一定小于logn。

Java program:

func(int[] arr, int maxDigits)

int exp = 1;

for(int i = 0; i<maxDigits; i++) {

  ArrayList[] bucketList = new ArrayList[10]; //use ArrayList<ArrayList<Integer>>.

  for(int k = 0; k<10; k++)  bucketList[k] = new ArrayList();

  for(int j = 0; j< arr.length; j++) { int index = arr[j]/exp%10; bucketList[index].add(arr[j]);

  exp = exp *10;

  int number = 0;

  for(int k = 0; k<10; k++) {//循环bucketList将所有element回放到原arr中}

}

8, Count Sort

原数组A={3, 5, 6, 3, 3, 5};

统计组B={0, 0, 0, 3, 0, 2, 1}; => {0, 0, 0, 0, 3, 3, 3, 5};  //数组B的长度是k, B[A[i]]++; for(i:k){oldCount = B[i]; B[i]=total; total+=oldCount;}

排序组C={3, 3, 3, 5, 5, 6}       //C[B[A[i]]=A[i]; B[A[i]]++;

Count Sort对于数组的元素值范围比较小,频率比较大的情况有效。时间和空间复杂度都是O(n+k)。和Radix sort一样,都不是比较排序。计数排序是用来排序0到100之间的数字的最好的算法。

9, Arrays.sort()

用的是Dual-pivot quick sort, average and worst time complexity are O(nlogn), worst我不确定,document里说的是对于多数情况下比quick sort要好。

Collections.sort(List<T> list); 的不同之处在于它是sort List, 据说内部是将list转成array用同样的排序算法,complexity is also O(nlogn).

Linked List

先构建一个Node:

class Node{

  int num;

  Node next;

  public Node(int n) { num = n; next = null;}

}

基本的构建一个singly linked list:

public static void main(String[] args) {
  Node top = null, node = null, last = null;
  System.out.printf("Enter some integers ending with 0\n");
  Scanner in = new Scanner(System.in);
  int input = in.nextInt();
  while(input != 0) {
    top = addInPlace(top, input);  
    input = in.nextInt();
  }
  print(top);
}

构建sorted linked list的方法:

public static Node addInPlace(Node top, int input) {
  Node prev = null;
  Node curr = top;
  Node node = new Node(input);
  while(curr != null && input > curr.num) {
    prev = curr;
    curr = curr.next;
  }
  node.next = curr;
  if(prev == null) return node;
  prev.next = node;
  return top;
}

Insert node into a circular sorted linked list的方法:

public static void insertIntoCircularList(Node top, int key) {
  Node curr = top;
  Node prev = null;
  Node node = new Node(key);
  do{
    prev = curr;
    curr = curr.next;
    if(key > prev.num && key <curr.num) break;
    if(key < prev.num && key <curr.num) break;
  }while(curr!= top);
  prev.next = node;
  node.next = curr;
}

反转singly linked list的方法:

private static Node reverseList(Node top) {
  Node p1 = null;
  Node p2 = top;
  Node p3 = null;
  while(p2 != null) {
    p3 = p2.next;
    p2.next = p1;
    p1 = p2;
    p2 = p3;
  }
  return p1;
}

asd

[Algorithm Basics] Sorting, LinkedList的更多相关文章

  1. [Algorithm Basics] Search

    1, Binary Search On sorted array! public static int binarySearch(int e, int[] array, int low, int hi ...

  2. Lazarus教程 中文版后续给出

    市面上有介绍Delphi的书籍(近来Delphi的书也是越来越少了),但没有一本系统的介绍Lazarus的书,这本书是网上的仅有的一本Lazarus教程,目前全部是英文,不过我已经着手开始翻译,争取尽 ...

  3. Data-Structure-Notes

    Data Structure Notes Chapter-1 Sorting Algorithm Selection Sorting: /* * Selection Sort */ template& ...

  4. Introduction to Machine Learning

    Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...

  5. 谷歌技术面试要点(Google面试)(14年5月20日交大专场)

    技术面试的主题 1.简要自我介绍: 姓名.学校.专业 做过的项目与实习 个人主要成就 2.技术评估: 构建与开发算法 编程 计算机基础知识 数据结构 现实世界问题解决能力 设计问题(主要针对博士生) ...

  6. 谷歌的java文本差异对比工具

    package com.huawei.common.transfertool.utils; /** * @author Paul * @version 0.1 * @date 2018/12/11 * ...

  7. 快速排序—三路快排 vs 双基准

    快速排序被公认为是本世纪最重要的算法之一,这已经不是什么新闻了.对很多语言来说是实际系统排序,包括在Java中的Arrays.sort. 那么快速排序有什么新进展呢? 好吧,就像我刚才提到的那样(Ja ...

  8. R语言 arules包 apriori()函数中文帮助文档(中英文对照)

    apriori(arules) apriori()所属R语言包:arules                                         Mining Associations w ...

  9. 结对编程作业(java)

    结对对象:许峰铭 一.Github项目地址:https://github.com/Leungdc/Leungdc/tree/master/%E5%9B%9B%E5%88%99%E8%BF%90%E7% ...

随机推荐

  1. 【转】本地存储-localStroage/sessionStorage存储

    原文地址:[js学习笔记-103]----本地存储-localStroage/sessionStorage存储 客户端存储 l  WEB存储 web存储最初作为html5的一部分被定义成API形式,但 ...

  2. 什么是BOM头

    什么是BOM头? BOM头是放在UTF-8编码的文件的头部的,占用三个字节,用来标识该文件属于UTF-8编码.现在已经有很多软件识别BOM头,但是还有些不能识别BOM头,比如PHP就不能识别BOM头, ...

  3. Swashbuckle for asp.net core 配置说明

    0x00 安装 Swashbuckle 6.0 打开程序包管理器控制台,输入: Install-Package Swashbuckle -Pre 0x01 配置 Startup.cs public v ...

  4. LR java Vuser 相关依赖JAR包,配置文件处置方法

    JAR包,配置文件依赖有两种处理方法 1.放到工程文件夹下(lr脚本目录),不支持负载机调用 2.F4  classpath设置加载jar包和配置文件的整个文件夹,麻烦些,但支持负载机调用(与http ...

  5. Spring RabbitMq

    spring-rabbitmq.xml文件内容如下: <?xml version="1.0" encoding="UTF-8"?><beans ...

  6. 【Spring】利用Spring最简单地使用异步方法

    有时候我们想异步地调用某个方法. 比如这个场景:在业务处理完毕后,需给用户发送通知邮件.由于邮件发送需调用邮箱服务商,有可能发生阻塞,我们就可以异步调用.当然有个前提,即如果邮件发送失败,不需要提示用 ...

  7. 在代码中调用gdb

    转载:http://blog.csdn.net/hanchaoman/article/details/5583457 在SIGSEGV的handler中调用gdb, 命令gdb [exec file] ...

  8. 《BI那点儿事》META DATA(元数据)

    关于数据仓库的数据,指在数据仓库建设过程中所产生的有关数据源定义,目标定义,转换规则等相关的关键数据.同时元数据还包含关于数据含义的商业信息,所有这些信息都应当妥善保存,并很好地管理.为数据仓库的发展 ...

  9. 解决Cannot find MySQL header files under /usr/include/mysql的错误

    按照下面的步骤能成功,亲测.转帖,做笔记 编译php-5.5-6的mysql支持,出现Cannot find MySQL header files under /usr/include/mysql. ...

  10. 【hdu4366】dfs序线段树

    #include <bits/stdc++.h> #define ll long long #define lson l, m, rt<<1 #define rson m+1, ...