BZOJ2095 [Poi2010]Bridges
首先二分答案。。。然后这张图变成了有一些有向边,有一些无向边
然后就是混合图欧拉回路的判断
我们知道如果是有向图,它存在欧拉回路的等价条件是所有点的出度等于入度
对于混合图。。。先不管有向边,把无向边随意定向
首先要满足条件就是当前图的点的度数都是偶数,因为把一条边反向端点的出度入度之差改变了2,奇偶性不变
我们只要判断是否把部分已经定向的无向边反向以后可以满足度都是偶数这个条件
用网络流来判断
对于每条边,如果定向为$x$到$y$,则$y$向$x$连边,流量为1
对于每个点$x$,如果出度 - 入度大于0,源点向$x$连边,否则$x$向汇点连边,流量为度数差除以2
如果满流则说明可以
/**************************************************************
Problem: 2095
User: rausen
Language: C++
Result: Accepted
Time:136 ms
Memory:952 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm> using namespace std;
const int N = 1e3 + ;
const int M = 2e3 + ;
const int inf = 1e9; inline int read(); struct Edge {
int x, y;
int v1, v2; inline void get() {
x = read(), y = read(), v1 = read(), v2 = read();
if (v1 > v2) swap(x, y), swap(v1, v2);
}
} E[M]; struct edge {
int next, to, f;
edge() {}
edge(int _n, int _t, int _f) : next(_n), to(_t), f(_f) {}
} e[M << ]; int n, m, S, T;
int first[N], tot;
int deg[N], tot_deg;
int d[N]; inline void Add_Edges(int x, int y, int f) {
e[++tot] = edge(first[x], y, f), first[x] = tot;
e[++tot] = edge(first[y], x, ), first[y] = tot;
} #define y e[x].to
#define p q[l]
bool bfs() {
static int l, r, x, q[N];
memset(d, -, sizeof(d));
d[q[] = S] = ;
for (l = r = ; l != r + ; ++l)
for (x = first[p]; x; x = e[x].next)
if (!~d[y] && e[x].f) {
d[q[++r] = y] = d[p] + ;
if (y == T) return ;
}
return ;
}
#undef p int dfs(int p, int lim) {
if (p == T || !lim) return lim;
int x, tmp, rest = lim;
for (x = first[p]; x && rest; x = e[x].next)
if (d[y] == d[p] + && ((tmp = min(e[x].f, rest)) > )) {
rest -= (tmp = dfs(y, tmp));
e[x].f -= tmp, e[x ^ ].f += tmp;
if (!rest) return lim;
}
if (rest) d[p] = -;
return lim - rest;
}
#undef y int Dinic() {
static int res, i;
for (res = , i = ; i <= n; ++i)
if (deg[i] & ) return -;
while (bfs())
res += dfs(S, inf);
return res;
} void rebuild_graph(int t) {
static int i;
tot = , tot_deg = ;
for (i = ; i <= n + ; ++i)
deg[i] = first[i] = ;
for (i = ; i <= m; ++i) {
if (E[i].v1 <= t) --deg[E[i].x], ++deg[E[i].y];
if (E[i].v2 <= t) Add_Edges(E[i].y, E[i].x, );
}
for (i = ; i <= n; ++i)
if (deg[i] > ) tot_deg += deg[i] >> , Add_Edges(S, i, deg[i] >> );
else Add_Edges(i, T, (-deg[i]) >> );
} int main() {
int i, l = inf, r = , tmp;
n = read(), m = read(), S = n + , T = S + ;
for (i = ; i <= m; ++i) {
E[i].get();
l = min(l, E[i].v1), r = max(r, E[i].v2);
}
l -= , tmp = (r += );
#define mid (l + r >> 1)
while (l + < r) {
rebuild_graph(mid);
if (Dinic() == tot_deg) r = mid;
else l = mid;
}
#undef mid
if (tmp == r) puts("NIE");
else printf("%d\n", r);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}
BZOJ2095 [Poi2010]Bridges的更多相关文章
- BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】
BZOJ2095 POI2010 Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛 ...
- [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...
- [BZOJ2095][Poi2010]Bridges 二分+网络流
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1187 Solved: 408[Submit][Sta ...
- BZOJ2095:[POI2010]Bridges(最大流,欧拉图)
Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...
- bzoj千题计划228:bzoj2095: [Poi2010]Bridges
http://www.lydsy.com/JudgeOnline/problem.php?id=2095 二分答案,判断是否存在混合图的欧拉回路 如果只有一个方向的风力<=mid,这条边就是单向 ...
- bzoj2095: [Poi2010]Bridges(二分+混合图求欧拉回路)
传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路 ...
- 【BZOJ2095】[Poi2010]Bridges 动态加边网络流
[BZOJ2095][Poi2010]Bridges Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个 ...
- 【BZOJ2095】[Poi2010]Bridges
[BZOJ2095][Poi2010]Bridges 题面 darkbzoj 题解 首先可以想到二分答案,那么我们就是要求我们新图中给所有边定向是否存在欧拉回路. 而有向图存在欧拉回路的充要条件为所有 ...
- bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...
随机推荐
- swift项目初体验--教你打造一款个性化图片浏览器(篇幅过大,慎入)
项目需求:做一个图片浏览器,点击图片查看大图,大图模式下,左右滚动能查看不同的图片. 项目的主要核心技术:图片的弹出和消失动画 项目源代码: Photo-Browser 一.对代码进行重构 ...
- document.body.clientHeight和 document.documentElement.clientHeight 的区别
1.javascript中的 document.body.clientHeight 和 document.documentElement.clientHeight 的区别 在往同事负责的页面添加我的功 ...
- 原生的on事件代理
<script> // jQuery $('.el').on('event', function() { }); // 原生方法 [].forEach.call(document.quer ...
- paper 96:计算机视觉-机器学习近年部分综述
计算机视觉和机器学习领域 近两年部分综述文章,欢迎推荐其他的文章,不定期更新. [2015] [1]. E.Sariyanidi, H. Gunes, A. Cavallaro, Aut ...
- SQL内联多个表
SQL多个表组合成一个表: strSql.Append(@"Select N.NotificationOptionId, S.FullName, No.Title, N.SortCode, ...
- 从NSGA到 NSGA II
NSGA(非支配排序遗传算法).NSGAII(带精英策略的非支配排序的遗传算法),都是基于遗传算法的多目标优化算法,都是基于pareto最优解讨论的多目标优化,遗传算法已经做过笔记,下面介绍paret ...
- 《zw版·Halcon-delphi系列原创教程》 Halcon分类函数008,matrix,矩阵函数
** 3dFromFundamentalMatrix( Rows1, Cols1, Rows2, Cols2, CovRR1, CovRC1, CovCC1, CovRR2, CovRC2, CovC ...
- 构建高性能的ASP.NET应用程序
看见大标题的时候,也许各位看官会自然而然的联想到如何在设计阶段考虑系统性能问题,如何编写高性能的程序代码.关于这一点,大家可以在MSDN和相关网站上找到非常多的介绍,不过大多是防患于未难,提供的是在设 ...
- 20个Linux服务器安全强化建议(二)
接上文,继续介绍一些Linux服务器的安全配置. #6.强密码策略. 当我们使用 useradd.usermod 命令创建或维护用户账号时,确保始终应用强密码策略.例如,一个好的密码至少包括8个字 ...
- HQL基础Query简单查询结果for输出和Iterator输出
HQL第一次课: hibernate Query Language:hibernate 查询语言 语法: query: String hql="from dept"; Query ...