题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407

分析:

m,n范围都不大,所以可以考虑枚举

先枚举m,然后判定某个m行不行

某个m可以作为一个解当且仅当:

对于任意的i,j 模方程:c[i]+x*p[i]=c[j]+x*p[j] (mod m) 无解或者最小正整数解>min(l[i],l[j])

这个可以用扩展欧几里德解决。

因为n<=15,所以可以暴力枚举每对i,j

[BZOJ1407][NOI2002]Savage(扩展欧几里德)的更多相关文章

  1. bzoj1407 [Noi2002]Savage——扩展欧几里得

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...

  2. BZOJ1407 NOI2002 Savage 【Exgcd】

    BZOJ1407 NOI2002 Savage Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  3. BZOJ1407 [Noi2002]Savage 【扩展欧几里得】

    题目链接 BZOJ1407 题解 枚举\(m\)用扩欧判即可 #include<algorithm> #include<iostream> #include<cstrin ...

  4. BZOJ1407 [Noi2002]Savage

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

  5. bzoj [Noi2002]Savage 扩展欧几里得

    枚举m,n^2判断 对于野人i,j,(H[i]+x*S[i])%m==(H[j]+x*S[j])%m,且x<=O[i]&&x<=O[j],他们才有可能相遇 化简得:(S[i ...

  6. BZOJ1407: [Noi2002]Savage exgcd

    Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...

  7. 【数学 exgcd】bzoj1407: [Noi2002]Savage

    exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...

  8. [Noi2002]Savage 题解

    [Noi2002]Savage 时间限制: 5 Sec  内存限制: 64 MB 题目描述 输入 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci ...

  9. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

随机推荐

  1. python基础(四)运算

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Python的运算符和其他语言类似 (我们暂时只了解这些运算符的基本用法,方便我们 ...

  2. linux 分区 物理卷 逻辑卷

    今天我们主要说说分区.格式化.SWAP.LVM.软件RAID的创建哈~ 格式化 查看当前分区:fdisk   -l 这个命令我们以前是讲过的,我现在问下,ID那项是什么意思? 83 是代表EXT2和E ...

  3. .Net程序员之Python基础教程学习----字典的使用 [Third Day]

      今天学习了字典的使用, 所谓的字典其实就是键值对数据, 一个字典里面有唯一的Key对应一个value,Key是唯一的,Value不唯一. 在.net添加相同的Key会报错,在Python,若出现相 ...

  4. BNUOJ 52325 Increasing or Decreasing 数位dp

    传送门:BNUOJ 52325 Increasing or Decreasing题意:求[l,r]非递增和非递减序列的个数思路:数位dp,dp[pos][pre][status] pos:处理到第几位 ...

  5. HDU 5139 Formula --离线处理

    题意就不说了,求公式. 解法: 稍加推导能够得出 : f(n) = n! * f(n-1) , 即其实是求: ∏(n!)  ,盲目地存下来是不行的,这时候看见条件: 数据组数 <= 100000 ...

  6. SVN的使用方法

    SVN的使用方法: 新建文件夹:文件夹1 在文件夹上点击右键--选择 SVN Checkout--弹出checkout窗口 下载文件的url获取:打开SVN--在要下载的文件上点击右键--点击Copy ...

  7. hibernate之关联映射

    No.1 映射一对多双向关联关系: 当类与类之间建立了关联,就可以方便的从一个对象导航到另一个或另一组与它关联的对象. 步骤一: 注意:hibernate要求在持久化类中定义集合类属性时,必须把属性类 ...

  8. lca入门———树上倍增法(博文内含例题)

    倍增求LCA: father[i][j]表示节点i往上跳2^j次后的节点 可以转移为 father[i][j]=father[father[i][j-1]][j-1] 整体思路: 先比较两个点的深度, ...

  9. NOI2004 郁闷的出纳员

    Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常 ...

  10. offsetLeft和style.left的区别

    offsetLeft 获取的是相对于父对象的左边距 left 获取或设置相对于 具有定位属性(position定义为relative)的父对象 的左边距 如果父div的position定义为relat ...