http://www.lydsy.com/JudgeOnline/problem.php?id=3028

题意:

每种食物的限制如下:
汉堡:偶数个;
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆:不超过一个。
面包:3的倍数个

问带$n$个物品的方案数(n<=10^500)

#include <bits/stdc++.h>
using namespace std; int main() {
int n=0; char c;
while(cin >> c) ((n*=10)+=c-'0')%=10007;
cout << ((n*(n+1)%10007)*(n+2)%10007)*1668%10007 << endl;
return 0;
}

  

学习了一下各种姿势= =

首先母函数易得= =

$$
\begin{align}
汉堡 & = x^0 + x^2 + x^4 + \cdots = \frac{1}{1-x^2} \\
蜜桃 & = x^1 + x^3 + x^5 + \cdots = \frac{x}{1-x^2} \\
面包 & = x^0 + x^3 + x^6 + \cdots = \frac{1}{1-x^3} \\
鸡块 & = x^0 + x^4 + x^8 + \cdots = \frac{1}{1-x^4} \\
土豆 & = x^0 + x^1 = \frac{1-x^2}{1-x} \\
可乐 & = x^0 + x^1 = \frac{1-x^2}{1-x} \\
鸡腿 & = x^0 + x^1 + x^2 = \frac{1-x^3}{1-x} \\
包子 & = x^0 + x^1 + x^2 + x^3 = \frac{1-x^4}{1-x} \\
\end{align}
$$

乘起来就是 $ f(x) = \frac{x}{(1-x)^4} $

根据泰勒展开$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$

发现
$$ f(x) = x \left( \frac{1}{1-x} \right)^4 = x \left( \sum_{i=0}^{\infty} x^i \right)^4 $$

而$\left( \sum_{i=0}^{\infty} x^i \right)^n$中的$x$的$a$次项的系数是$\binom{a+n-1}{n-1}$

证明:

对于系数$a$,由于有$n$个多项式相乘,我们就设$a$由$n$个非负数的和。而由于有$0$的出现,我们将式子两边加上$n$,这样就能没负数啦= =。将这些数全部变成$1$的和,即$a+n = 1 + 1 + 1 + \cdots +1$,假设有$n-1$个竖线插在这$a+n$个$1$之间,即有$a+n-1$个位置,那么显然$\binom{a+n-1}{n-1}$就是答案= =(即分割成$n$份。

所以答案就是$f(x)$的$x$的$n$次系数,即$\binom{n+2}{3}$

【BZOJ】3028: 食物的更多相关文章

  1. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

  2. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  3. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  4. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  5. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  6. BZOJ 3028: 食物

    \(\color{#0066ff}{ 题目描述 }\) 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮 ...

  7. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  8. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  9. bzoj 3028: 食物【生成函数】

    承德汉堡:\( 1+x^2+x^4+...=\frac{1}{1-x^2} \) 可乐:\(1+x \) 鸡腿:\( 1+x+x^2=\frac{x^3-1}{x-1} \) 蜜桃多:\( x+x^3 ...

  10. bzoj 3028: 食物 生成函数_麦克劳林展开

    不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...

随机推荐

  1. 设计模式学习之桥接模式(Bridge,结构型模式)(15)

    参考地址:http://terrylee.cnblogs.com/archive/2006/02/24/336652.html 概述 在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化, ...

  2. golang exec Command

    package mainimport ( "fmt" "log" "os/exec")func main() { out, err := e ...

  3. [Linux] 解压tar.gz文件,解压部分文件

    遇到数据库无法查找问题原因,只能找日志,查找日志的时候发现老的日志都被压缩了,只能尝试解压了   数据量比较大,只能在生产解压了,再进行查找 文件名为*.tar.gz,自己博客以前记录过解压方法: h ...

  4. Waiting Processed Cancelable ShowDialog (Release 2)

    namespace Test { using System; using System.Windows.Forms; static class Program { /// <summary> ...

  5. Java学习笔记(十)——多态

    一.多态 1.对象的多种形态 (1)引用多态: 父类的引用可以指向本类的对象 父类的引用可以指向子类的对象 (2)方法多态: 创建本类对象时,调用的方法为本类方法: 创建子类对象时,调用的方法是子类方 ...

  6. Parcelable和Serializable的区别

      一.Android为什么要序列化?什么是序列化,怎么进行序列化 why 为什么要了解序列化?—— 进行Android开发的时候,无法将对象的引用传给Activities或者Fragments,我们 ...

  7. (转载)如何借助KeePassX在Linux上管理多个密码

    转自:http://netsecurity.51cto.com/art/201311/417764.htm 如今,基于密码的身份验证在网上非常普遍,结果你恐怕数不清自己到底在使用多少个密码.实际上,据 ...

  8. input上下居中问题

    IE:不管该行有没有文字,光标高度与font-size一致.FF:该行有文字时,光标高度与font-size一致.该行无文字时,光标高度与input的height一致.Chrome:该行无文字时,光标 ...

  9. SoapUI接口测试之JDBC(三)

    JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用java语言编写的类和接口 ...

  10. MPAndroidChart饼图属性及相关设置

    公司最近在做统计功能,所以用到了饼图,在网上查了一些资料最终决定使用MPAndroidChart,使用起来非常方便,还有一些问题通过各种查找,终于解决...废话不多说,先看下效果图: 布局文件: &l ...