ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列。
- 斐波拉契数列
又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)
在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
- 斐波拉契数列与黄金分割-----(涉及今天的例题)
有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618)
- 斐波拉契数列-部分数学规律
偶数项求和
平方求和
- 斐波拉契-卢卡斯数列
|
n
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
…
|
|
斐波那契数列F(n)
|
1
|
1
|
2
|
3
|
5
|
8
|
13
|
21
|
34
|
55
|
…
|
|
卢卡斯数列L(n)
|
1
|
3
|
4
|
7
|
11
|
18
|
29
|
47
|
76
|
123
|
…
|
|
F(n)*L(n)
|
1
|
3
|
8
|
21
|
55
|
144
|
377
|
987
|
2584
|
6765
|
…
|
- 与斐波拉契数列的另一个共同性质:
- 中间项的平方数与前后两项之积的差的绝对值是一个恒值
- 黄金特征-----(与例题有关)
- 在一个斐波拉契-卢卡斯数列的无穷大项(记为第m项),则第m-1项除以m项一定无限接近黄金分割0.618---可以计算倒数第二项的模糊值(设为a)
- 且m足够大时,(m-1)/m>=0.618
- 需要注意:在m值较大时,(m-1)/m即便很接近0.618,但m值太大,因此0.618*m得到的模糊值也会有较大误差,所以需要a++直到找到最适合的前两项
- 上一点注意的详细公式是:小于两倍的sqrt(n)。
//斐波拉契-卢卡斯数列
//Memory 1100 K,Time: 234 Ms
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; #define INF 0x3f3f3f3f int m1,m2; //让第二项最小的初始两项 //计算初始两项并刷新最适合的m1,m2
void compute(int a,int b,int t)
{
while(t <= a && t >= )
{
b = a;
a = t;
t = b - a;
}
if(m2 > b)
{
m1 = a;
m2 = b;
}
} int main()
{
int T,n;
scanf("%d",&T); while(T--)
{
int a,t;
scanf("%d",&n);
a = (int)(0.618*n)-; //倒数第二项模糊值 m1 = m2 = INF;
int i = -;
while(a+(++i) <= n && i <= (int)*sqrt(n)) //倒数第二项小于最后一项,且次数小于2*sqrt(n)
{
compute(a+i,n,n-a-i);
} printf("%d %d\n",m1,m2);
} return ;
}
上述Code的 i <= (int)2*sqrt(n)的不等式是小编试出来的,测试数据在这些次数内可以过,如果不加的话,肯定是TLE的。
大家如果有更加合适的Code可以写在评论里面(⊙o⊙)哦~,小编太渣了,没有更加清楚明白的思路= =
Fighting~
ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)的更多相关文章
- 【斐波拉契+数论+同余】【ZOJ3707】Calculate Prime S
题目大意: S[n] 表示 集合{1,2,3,4,5.......n} 不存在连续元素的子集个数 Prime S 表示S[n]与之前的所有S[i]互质; 问 找到大于第K个PrimeS 能整除X 的第 ...
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
随机推荐
- JMX整理
阅读目录 Standard MBean与MXBean的区别 实现 Notification 认证与授权 JConsole Custom Client What and Why JMX JMX的全称为J ...
- JQ实现右下角scrollTop()事件
废话不多说,先贴代码 <script> $(document).ready(function(){ $("#id").hide(); $(function(){ // ...
- 卸载金山猎豹免费WIfi后,上不了网的解决办法
进入网络和共享中心,打开网络适配器,右键无线连接,属性,就在打开属性的那个页面,在靠上的位置有个LieBao xxx Driver,卸载. 然后,打开浏览器,试试这个链接:www.baidu.com. ...
- fedora23也会死机, 怎么办
现在使用的 fedora23 , 在有些 时候老是 死机, 有的是 firefos引起的, 但 更多的时候, 是 由 终端terminal gnome-terminal引起的, 特别是在 操作 vim ...
- recording just for inquiry in the future
auditd审计 相关命令有: auditd, auditctl, ausearch, aureport 相关文件: /etc/audit/auditd.conf, /etc/audit/audit. ...
- Storm与Spark Streaming比较
前言spark与hadoop的比较我就不多说了,除了对硬件的要求稍高,spark应该是完胜hadoop(Map/Reduce)的.storm与spark都可以用于流计算,但storm对应的场景是毫秒级 ...
- firstchild.data与childNodes[0].nodeValue意思(转)
x.firstchild.data:获取元素第一个子节点的数据: x.childNodes[0]::获取元素第一个子节点; x.childNodes[0].nodeValue.:也是获取元素第一个子节 ...
- ajax浅析---ScriptManager
使用ScriptManager控件 它用来处理页面上的所有组件以及页面局部更新,生成相关的客户端代理脚本以便能够在JavaScript中访问Web Service,所有需要支持ASP.NET AJAX ...
- Codeforces #270 D. Design Tutorial: Inverse the Problem
http://codeforces.com/contest/472/problem/D D. Design Tutorial: Inverse the Problem time limit per t ...
- MySQL事物控制
有时候我们需要保证事物的各个步骤都执行成功的前提下才能让每一步骤的事物执行,此时就需要事物控制. 事物控制用于保证数据的一致性,它由一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败 ...