洛谷P1108 低价购买题解
看到“你必须用低于你上次购买它的价格购买它”,有没有想到什么?没错,又是LIS,倒过来的LIS,所以我们只要把读入的序列倒过来就可以求LIS了,第一问解决。
首先要厘清的是,对于这一题第二问貌似用\(nlog_{2}n\)的算法不是很好,因为我们需要序列中每一个位置可以接成LIS的长度。再看看数据范围,会发现\(n^2\)完全可做。仔细想一想,不难发现第二问其实也是个\(DP\):若\(f[i]\)表示以\(i\)位置为结尾的LIS的长度,\(c[i]\)表示序列\(1\)~\(i\)位置按照最优选择的方案数,则状态转移方程\(c[i]=\sum\limits_{1\leqslant j<i,a[i]>a[j],f[i]=f[j]+1}c[j]\),同时还要去重\(c[i]-=\sum\limits_{1\leqslant j<i,a[i]=a[j],f[i]=f[j]}c[j]\)。
代码
``` cpp
#include
#include
using namespace std;
const int N = 5005;
int n, a[N], f[N], c[N], ans1, ans2;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) cin >> a[n+1-i];
for(int i = 1; i <= n; i++) { \常规n^2解法
f[i] = 1;
for(int j = 1; j < i; j++)
if(a[i]>a[j]) f[i] = max(f[i], f[j]+1);
ans1 = max(ans1, f[i]);
}
for(int i = 1; i <= n; i++) {
if(f[i] == 1) c[i] = 1; \初始化
for(int j = 1; j < i; j++) {
if(f[i] == f[j] && a[i] == a[j]) c[i] -= c[j]; \去重
if(f[i] == f[j]+1 && a[i] > a[j]) c[i] += c[j]; \状态转移
}
}
for(int i = 1; i <= n; i++)
if(f[i] == ans1) ans2 += c[i]; \统计答案
cout << ans1 << " " << ans2;
return 0;
}
洛谷P1108 低价购买题解的更多相关文章
- 洛谷 P1108 低价购买
P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...
- 洛谷 P1108 低价购买 解题报告
P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷P1108 低价购买
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷P1108 低价购买 (最长下降子序列方案数)(int,long long等 范围)
这道题用n方的算法会很好做 我一开始想的是nlogn的算法求方案数, 然后没有什么想法(实际上也可以做,但是我太弱了)我们就可以根据转移方程来推方案数,只是把max改成加,很多动规题 都是这样,比如背 ...
- 洛谷 P1108 低价购买(LIS,统计方案数)
传送门 解题思路 看第一个要求,很显然是求最长下降子序列,和LIS几乎一样,很简单,再看第二个问号,求最长下降子序列的方案数??这怎么求? 注意:当二种方案“看起来一样”时(就是说它们构成的价格队列一 ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
- 【洛谷P3960】列队题解
[洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...
- 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II
洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...
随机推荐
- PJSUA2开发文档--第三章 PJSUA2高级API
3. PJSUA2高级API PJSUA2是PJSUA API以上的面向对象抽象.它为构建会话发起协议(SIP)多媒体用户代理应用程序(也称为IP / VoIP软电话)提供高级API.它将信令,媒体和 ...
- PostgreSql 查询表结构和说明
select (select relname from pg_class where oid=a.attrelid) relname , () as comment from pg_class whe ...
- Saltstack_使用指南01_部署
1. 主机规划 服务器名称 操作系统版本 内网IP 外网IP(模拟) Hostname 部署模块 salt100 CentOS7.5 172.16.1.100 10.0.0.100 salt100 s ...
- 我的第一个python web开发框架(25)——定制ORM(一)
在开始编写ORM模块之前,我们需要先对db_helper进行重构,因为ORM最终生成的sql是需要转给db_helper来执行的,所以拥有一个功能完善.健壮的数据库操作类是非常必要的. 这是项目原db ...
- MySQL常用日期时间函数
日期和时间函数: MySQL服务器中的三种时区设置: ①系统时区---保存在系统变量system_time_zone ②服务器时区---保存在全局系统变量global.time_zone ③每个客户端 ...
- Linux搜索文件、文件夹数、文件个数命令
1.查看某文件夹下文件的个数:ls -l|grep "^-"|wc -l 2.查看某文件夹下文件目录的个数:ls -l|grep "^d"|wc -l 3.查看 ...
- 多节点,多线程下发订单,使用zookeeper分布式锁机制保证订单正确接入oms系统
假设订单下发, 采用单机每分钟从订单OrderEntry接口表中抓100单, 接入订单oms系统中. 由于双十一期间, 订单量激增, 导致订单单机每分钟100单造成, 订单积压. 所以采用多节点多线程 ...
- 主成分分析 —PCA
一.定义 主成分分析(principal components analysis)是一种无监督的降维算法,一般在应用其他算法前使用,广泛应用于数据预处理中.其在保证损失少量信息的前提下,把多个指标转化 ...
- C++ SIMD
SIMD Single Instruction Multiple Data
- Sklearn中的回归和分类算法
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...