题目描述

  记\(sgcd(i,j)\)为\(i,j\)的次大公约数。

  给你\(n\),求

\[\sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k
\]

  对\(2^{32}\)取模。

  \(n\leq {10}^9,k\leq 50\)

题解

  记\(f(n)\)为\(n\)的次大因数

  显然\(sgcd(i,j)=f(gcd(i,j))\)

  先推一波式子。

\[\begin{align}
&\sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k\\
=&\sum_{i=1}^n{f(i)}^k(2\sum_{j=1}^\frac{n}{i}\varphi(j)-1)
\end{align}
\]

  后面那个\(\varphi(i)\)的前缀和可以杜教筛/min_25筛+数论分块解决,所以只用关心前面这部分。

  观察min_25筛求质数的\(k\)次方的前缀和的过程,发现在求\(f_{n,j}=\sum_{i=2}^n[i\text{是质数或}i\text{的每个质因子都}>p_j]i^k\)的时候,减掉的那部分就是(最小质因子\(=p_j\)的数除以\(p_j\)后的值)的\(k\)次方和。所以直接把这些东西加起来就是我们要求的答案了。

  还要加上质数的答案,即区间质数个数。

  自然数幂求和要用第二类斯特林数那个做法。

\[\begin{align}
S_m(n)&=\sum_{i=1}^ni^m\\
&=\sum_{i=1}^n\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}i^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\sum_{i=1}^ni^\underline{j}\\
&=\sum_{j=1}^m\begin{Bmatrix}m\\j\end{Bmatrix}\frac{{(n+1)}^\underline{j+1}}{j+1}
\end{align}
\]

  时间复杂度:\(O(\sqrt{n}k^2+\frac{n^\frac{3}{4}}{\log n})\)或\(O(\sqrt{n}k^2+\frac{n^\frac{3}{4}}{\log n}+n^\frac{2}{3})\)

代码

1

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c,b=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-')
{
c=getchar();
b=1;
}
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return b?-s:s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
ll n;
int k;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a*=a)
if(b&1)
s*=a;
return s;
}
int S[60][60];
int s[60];
int calc(ll x)
{
s[0]=x;
for(int i=1;i<=k;i++)
{
s[i]=1;
ll v=(x+1)/(i+1)*(i+1);
s[i]*=(x+1)/(i+1);
for(ll j=x+1;j>=x-i+1;j--)
s[i]*=(j==v?1:j);
for(int j=0;j<i;j++)
s[i]-=S[i][j]*s[j];
}
return s[k];
}
void init()
{
S[0][0]=1;
for(int i=1;i<=k;i++)
for(int j=1;j<=i;j++)
S[i][j]=S[i-1][j-1]-(i-1)*S[i-1][j];
}
namespace gao1
{
const int m=100000;
const int M=100010;
int b[M],pri[M];
int cnt;
int f1[M],f2[M];
int g1[M],g2[M];
int ans1[M],ans2[M];
void init()
{
for(int i=2;i<=m;i++)
{
if(!b[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=m;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
}
void gao()
{
init();
for(int i=1;i<=m;i++)
{
f1[i]=calc(i)-1;
g1[i]=i-1;
}
for(int i=1;n/i>m;i++)
{
f2[i]=calc(n/i)-1;
g2[i]=n/i-1;
}
for(int i=1;i<=cnt;i++)
{
int j;
int v=fp(pri[i],k);
for(j=1;n/pri[i]/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
ans2[j]+=f2[pri[i]*j]-f1[pri[i]-1];
f2[j]-=v*(f2[pri[i]*j]-f1[pri[i]-1]);
g2[j]-=g2[pri[i]*j]-g1[pri[i]-1];
}
for(;n/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
ans2[j]+=f1[n/pri[i]/j]-f1[pri[i]-1];
f2[j]-=v*(f1[n/pri[i]/j]-f1[pri[i]-1]);
g2[j]-=g1[n/pri[i]/j]-g1[pri[i]-1];
}
for(j=m;j>=2&&j>=(ll)pri[i]*pri[i];j--)
{
ans1[j]+=f1[j/pri[i]]-f1[pri[i]-1];
f1[j]-=v*(f1[j/pri[i]]-f1[pri[i]-1]);
g1[j]-=g1[j/pri[i]]-g1[pri[i]-1];
}
}
for(int i=1;i<=m;i++)
ans1[i]+=g1[i];
for(int i=1;n/i>m;i++)
ans2[i]+=g2[i];
}
int query(ll x)
{
return x<=m?ans1[x]:ans2[n/x];
}
}
namespace gao2
{
const int m=1000000;
const int M=1000010;
int pri[M],b[M],cnt;
int phi[M],s[M];
int b2[M],s2[M];
void init()
{
phi[1]=1;
for(int i=2;i<=m;i++)
{
if(!b[i])
{
pri[++cnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=cnt&&i*pri[j]<=m;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
{
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(int i=1;i<=m;i++)
s[i]=s[i-1]+phi[i];
}
void gao()
{
init();
}
int query(ll x)
{
if(x<=m)
return s[x];
if(b2[n/x])
return s2[n/x];
b2[n/x]=1;
int &res=s2[n/x];
res=x*(x+1)/2;
for(ll i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
res-=query(x/i)*(j-i+1);
}
return res;
}
}
int main()
{
open("51nod1847");
scanf("%lld%d",&n,&k);
init();
gao1::gao();
gao2::gao();
int ans=0;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans+=(gao1::query(j)-gao1::query(i-1))*(2*gao2::query(n/i)-1);
}
printf("%u\n",(unsigned)ans);
return 0;
}

2

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c,b=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-')
{
c=getchar();
b=1;
}
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return b?-s:s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
ll n;
int k;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a*=a)
if(b&1)
s*=a;
return s;
}
int S[60][60];
int s[60];
int calc(ll x)
{
s[0]=x;
for(int i=1;i<=k;i++)
{
s[i]=1;
ll v=(x+1)/(i+1)*(i+1);
s[i]*=(x+1)/(i+1);
for(ll j=x+1;j>=x-i+1;j--)
s[i]*=(j==v?1:j);
for(int j=0;j<i;j++)
s[i]-=S[i][j]*s[j];
}
return s[k];
}
void init()
{
S[0][0]=1;
for(int i=1;i<=k;i++)
for(int j=1;j<=i;j++)
S[i][j]=(S[i-1][j-1]-(i-1)*S[i-1][j]);
}
namespace gao1
{
const int m=100000;
const int M=100010;
int b[M],pri[M];
int cnt;
int f1[M],f2[M];
int ans1[M],ans2[M];
// vector<int> s1[M],s2[M];
// vector<short> b1[M],b2[M];
void init()
{
for(int i=2;i<=m;i++)
{
if(!b[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=m;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
}
void gao()
{
init();
for(int i=1;i<=m;i++)
f1[i]=calc(i)-1;
for(int i=1;n/i>m;i++)
f2[i]=calc(n/i)-1;
for(int i=1;i<=cnt;i++)
{
int j;
int v=fp(pri[i],k);
for(j=1;n/pri[i]/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
int x=f2[pri[i]*j]-f1[pri[i]-1];
ans2[j]+=x;
f2[j]-=v*x;
}
for(;n/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
int x=f1[n/pri[i]/j]-f1[pri[i]-1];;
ans2[j]+=x;
f2[j]-=v*x;
}
for(j=m;j>=(ll)pri[i]*pri[i];j--)
{
int x=f1[j/pri[i]]-f1[pri[i]-1];
ans1[j]+=x;
f1[j]-=v*x;
}
}
}
int query(ll x)
{
return x<=m?ans1[x]:ans2[n/x];
}
}
namespace gao2
{
const int m=100000;
const int M=100010;
int pri[M],b[M],cnt;
int f1[M],f2[M],g1[M],g2[M];
int s1[M],s2[M];
int b1[M],b2[M];
void init()
{
for(int i=2;i<=m;i++)
{
if(!b[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=m;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
pri[cnt+1]=m+1;
pri[0]=1;
}
void gao()
{
init();
for(int i=1;i<=m;i++)
{
f1[i]=(ll)(i+2)*(i-1)/2;
g1[i]=i-1;
}
for(int i=1;n/i>m;i++)
{
f2[i]=(n/i&1?(n/i-1)/2*(n/i+2):(n/i+2)/2*(n/i-1));
g2[i]=n/i-1;
}
for(int i=1;i<=cnt;i++)
{
int j;
int x=f1[pri[i]-1];
int y=g1[pri[i]-1];
for(j=1;n/pri[i]/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
f2[j]-=pri[i]*(f2[pri[i]*j]-x);
g2[j]-=g2[pri[i]*j]-y;
}
for(;n/j>m&&n/j>=(ll)pri[i]*pri[i];j++)
{
f2[j]-=pri[i]*(f1[n/pri[i]/j]-x);
g2[j]-=g1[n/pri[i]/j]-y;
}
for(j=m;j>=2&&j>=(ll)pri[i]*pri[i];j--)
{
f1[j]-=pri[i]*(f1[j/pri[i]]-x);
g1[j]-=g1[j/pri[i]]-y;
}
}
for(int i=1;i<=m;i++)
gao1::ans1[i]+=g1[i];
for(int i=1;n/i>m;i++)
gao1::ans2[i]+=g2[i];
for(int i=1;i<=m;i++)
f1[i]-=g1[i];
for(int i=1;n/i>m;i++)
f2[i]-=g2[i];
for(int i=1;i<=m;i++)
s1[i]=f1[i];
for(int i=1;n/i>m;i++)
s2[i]=f2[i];
for(int i=cnt;i>=1;i--)
{
int x=pri[i];
for(int j=1;n/j>m&&n/j>=(ll)x*x;j++)
{
s2[j]-=x-1;
ll x2=n/j/x;
int s=x-1;
for(;x2;x2/=x,s*=x)
s2[j]+=((x2<=m?s1[x2]-f1[min((int)x2,pri[i])]:s2[n/x2]-f1[pri[i]])+1)*s;
}
for(int j=m;j>=(ll)x*x;j--)
{
s1[j]-=x-1;
int x2=j/x;
int s=x-1;
for(;x2;x2/=x,s*=x)
s1[j]+=(s1[x2]-f1[min(x2,pri[i])]+1)*s;
}
}
}
int query(ll x)
{
return (x<=m?s1[x]:s2[n/x])+1;
}
}
int main()
{
open("51nod1847");
scanf("%lld%d",&n,&k);
init();
gao1::gao();
gao2::gao();
int ans=0;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans+=(gao1::query(j)-gao1::query(i-1))*(2*gao2::query(n/i)-1);
}
printf("%u\n",ans);
return 0;
}

【51NOD1847】奇怪的数学题 min_25筛的更多相关文章

  1. 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)

    link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...

  2. 【51NOD1965】奇怪的式子 min_25筛

    题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...

  3. 51nod 1965 奇怪的式子——min_25筛

    题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \ ...

  4. [51nod1847]奇怪的数学题

    description 51nod 求\[\sum_{i=1}^{n}\sum_{j=1}^{n}sgcd(i,j)^k\]其中\(sgcd(i,j)\)表示\(i,j\)的次大公约数,如果\(gcd ...

  5. 51nod 1965 奇怪的式子 —— min_25筛

    题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 推式子就同这里:https://www.cnblogs.com/yoyo ...

  6. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  7. 51nod1965. 奇怪的式子(min_25筛)

    题目链接 http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 题解 需要求的式子显然是个二合一形式,我们将其拆开,分别计算 \(\ ...

  8. [51nod 1847]奇怪的数学题

    [ 51nod 1847 ]奇怪的数学题 题目   点这里看题目. 分析   是挺奇怪的......   以下定义质数集合为\(P\),\(p_i\)为第\(i\)个质数.   定义\(mp(x)\) ...

  9. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

随机推荐

  1. 请不要在广州.NET俱乐部群里谈郑智话题,谢谢!

    收到私聊说代码无国界,但是程序员是有国界的,程序员也有关心国家大事的权力!   我是极度赞同“代码无国界,但是程序员是有国界的,”我也极度赞同程序员也要爱国. 因为我们新兴县六祖镇叶氏家族就有四位爱国 ...

  2. gitbook 入门教程之插件介绍

    插件是 gitbook 的扩展功能,很多炫酷有用的功能都是通过插件完成的,其中插件有官方插件和第三方插件之分. 推荐官方插件市场 https://plugins.gitbook.com/ 寻找或下载相 ...

  3. 英语口语练习系列-C22-吃东西

    基础词汇 1. bill [bɪl] n. 账单:钞票:法案:鸟嘴 Bill (人名)比尔 pay the bill 付账单 telephone bill 话费单 electricity bill 电 ...

  4. China Tightens Recycling Import Rules

    China Tightens Recycling Import Rules We have all seen the pictures of cities in China with air poll ...

  5. Python开发【第四篇】函数

    函数的作用 函数可以让编程逻辑结构化以及模块化 无论是C.C++,Java还是Python,函数是必不可少的知识点,也是很重要的知识点,函数是完成一个功能的代码块,使用函数可以使逻辑结构变得更加清晰以 ...

  6. 登陆验证AuthorizeAttribute

    自定义验证,验证失败后:Response.Redirect.

  7. python Socket socketserver

    Socket 套接字 socket的 类型 实现socket对象时传入 到socket 类中 socket.AF_INET 服务器间的通讯 IPv4 socket.AF_INET6 IPv6 sock ...

  8. Linux内存管理 (21)OOM

    专题:Linux内存管理专题 关键词:OOM.oom_adj.oom_score.badness. Linux内核为了提高内存的使用效率采用过度分配内存(over-commit memory)的办法, ...

  9. たくさんの数式 / Many Formulas AtCoder - 2067 (枚举二进制)

    Problem Statement You are given a string S consisting of digits between 1 and 9, inclusive. You can ...

  10. python 支付宝SDK

    python 支付宝SDK代码如下 from datetime import datetime from Crypto.PublicKey import RSA from Crypto.Signatu ...