设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$.

解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n(n-1)\ (n\geq 3)$.

[再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])的更多相关文章

  1. [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

    设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...

  2. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

随机推荐

  1. 【题解】洛谷P3660 [USACO17FEB]Why Did the Cow Cross the Road III

    题目地址 又是一道奶牛题 从左到右扫描,树状数组维护[左端点出现而右端点未出现]的数字的个数.记录每个数字第一次出现的位置. 若是第二次出现,那么删除第一次的影响. #include <cstd ...

  2. day19-网络编程基础(二)

    今天没有很多概念性的东西,主要是方法性的东西以及编程的一些方法吧 今日份目录 1.UDP传输的特点以及实验 2.UTP与UDP传输的区别 3.基于tcp的low版带验证功能的FTP小程序 4.基于so ...

  3. 10分钟,AppCan帮你搞定跨平台开发APP问题!

    跨平台开发APP时,开发者总会遇到一些问题,如打包失败等等,尤其对于iOS来说,由于它的限制性会导致一些状况发生(如证书上传问题等),小编总结了几个AppCan在线IOS打包失败常见的情况及排查技巧, ...

  4. zabbix优化,配合文件,zabbix_get命令

    一.配置文件优化 server端配置文件添加如下 StartPollers=160 #zabbix_server的进程数 StartPollersUnreacheable=80 #默认情况下,ZABB ...

  5. Spring Security(三十三):10.3 Password Encoding

    Spring Security’s PasswordEncoder interface is used to support the use of passwords which are encode ...

  6. IDEA+循环语句 or 输出语句 快捷操作

    IDEA+循环语句 or 输出语句 快捷操作:https://blog.csdn.net/shijiebei2009/article/details/44726433 for循环:仅输入fori然后回 ...

  7. C#中指针使用总结(转载)

    C#为了类型安全,默认并不支持指针.但是也并不是说C#不支持指针,我们可以使用unsafe关键词,开启不安全代码(unsafe code)开发模式.在不安全模式下,我们可以直接操作内存,这样就可以使用 ...

  8. 实验六:通过grub程序引导本地磁盘内核启动系统(busybox)

    实验名称: 通过grub程序引导本地磁盘内核启动系统(busybox) 实验环境: 理论上,该实验只需要配置好xen环境即可,但是,我们的xen环境安装在centOS7上,但是我们又是使用的kerne ...

  9. 《React Native 精解与实战》书籍连载「React Native 源码学习方法及其他资源」

    此系列文章将整合我的 React 视频教程与 React Native 书籍中的精华部分,给大家介绍 React Native 源码学习方法及其他资源. 最后的章节给大家介绍 React Native ...

  10. Java里的不能与无用.

    不能获取参数名 , 导致函数的参数名无用. 在MyBatis的方法里. 参数名是无法反射得到的. 导致必须使用注解,指定参数名. 这样的话. 参数名就没有了意义.