Ceres Solver 入门稍微多一点
其实ceres solver用了挺多的,可能是入门不精,有时候感觉感觉不理解代码上是怎么实现的,这次就通过ceres的官网仔细看了一些介绍,感觉对cpp了解更好了一些。
跟g2o的比较的话,感觉ceres solver是一个更通用的非线性优化器,g2o是更加针对SLAM的开发。比如g2o对一个outlier有函数借口,我了解的ceres里就只能在计算error搞一搞了。
本来以为只有ceres提供了autodiff,后来被告之g2o也有了,那感觉ceres也没这么有优势了。不过真的要落地的肯定都要自己写的,前期开发的话,大家哪个熟用哪个呗。
Ceres
Ceres solver consists of two parts:
- a modeling API construct an optimization problem one term at a time.
- a solver API that controls the minimization algorithm.
Cost Function
which is responsible for computing a vector of residuals and Jacobian matrices.
class CostFunction {
public:
virtual bool Evaluate(double const* const parameters, double* residuals, double** jacobians) = 0;
const vector<int32>& parameter_block_sizes();
int num_residuals() const;
protected:
vector<int32>* mutable_parameter_block_sizes();
void set_num_residuals(int num_residuals);
};
CostFunction::parameter_block_sizes
and CostFunction::num_residuals_
would be set by Problem when using Problem::AddResidualBlock()
.
bool CostFunction::Evaluate
parameters
is an array of arrays of size x and parameters[i]
is an array of size xx.
parameters
is never NULL.
residuals
is an array of size xxx.
residuals
is never NULL.
jacobian
is an array of arrays of size xxxx.
if jacobian
is NULL, the user is only expected to compute the residuals.
jacobian
is a row-major array. of residuam_num * parameter_block_size
If jacobian[i]
is NULL, then this computation can be skipped. This is the case when the corresponding parameter block is markded constant.
SizedCostFunction
If the size of the parameter block and the size of the residual vector is known at compile time(常规场景).
The user only needs to implement CostFunction::Evaluate()
.
// 模板参数
template<int kNumResiduals, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
class SizedCostFUnction: public CostFunction {
public:
virtual bool Evalute(double const* const* parameters,
double* residuals,
double** jacobians) const = 0;
};
AutoDiffCostFunction
template <typename CostFunctor,
int kNumResiduals, int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
public:
explicit AutoDiffCostFunction(CostFunctor* functor);
AutoDiffCostFunction(CostFunctor* functor, int num_residuals);
};
To get an auto differentiated cost function, you must define a class(functor) with a templated operator() (a functor) that computes the cost function in terms of the template parameter T.
The function must write the computed value in the last argument( the only non-const one) and return true to indicate success. (咋搞的??)
For example $ e=k - x^Ty $, the actual cost added to the total problem is e^2 while the squaring is implicitly done by the optimization framework.
class MyScalarCostFunctor {
public:
MyScalarCostFunctor(double k) : k_(k) {}
template <typename T>
bool operator()(const T* const x, const T* const y, T* e) const {
e[0] = k_ - x[0] * y[0] - x[1] * y[1];
return true;
}
private:
double k_;
};
class definition is shown as below:
CostFunction* cost_function = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(new MyScalarCostFUnctor(1.0));
// the sequence is: Dimension of residuals, of x and of y.
AutoDiffCostFunction also supports cost functions with a runtime-determined number of residuals. 这里用了第二个AutoDiffCostFunction
的第二个构造函数AutoDiffCostFunction(CostFunctor*, int)
.
e.g.
CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
new CostFunctiorWithDynamicNumResiduals(1.0),
runtime_number_of_residuals);
The framework can currently accommodate cost functions of up to 10 independent variables, and there is no limit on the dimensionality of each of them.
DynamicAutoDiffCostFunction
It requires that the number of parameter blocks and their sizes be known at compile time. It also has an upper limit of 10 parameter blocks.
template <typename CostFunctor, int Stride = 4>
class DynamicAutoDiffCostFunction : public CostFunction {};
The functor signature is a bit different.
struct MyCostFunctor {
template<typename T>
bool operator() (T const* const * parameters, T* residuals) const {
}
}
这玩意反正不太好用。
NumericDiffCostFunction
有时候不能定义一个cost functor, 用这玩意。
template <typename CostFunctor, NumericDiffMethodType method = CENTRAL, int kNumResiduals, int N0, int N1 = 0> // 当然后还有8个
class NumericDIffCostFunction : public SizedCostFunction<kNumResiduals, N0, N1> {}
在ceres中有三种numeric differentiation的方式,FORWARD, CENTRAL, RIDDERS.
如果你的parameter block是在一个流行上的,numerical differentiation可能会有问题,因为这个方式只是扰动parameter block中单个coordinate,这也就表示我们认为parameter block在欧式空间里而忽视了流行的structure。
e.g. Pertubing the coordiantes of a unit quaternion will vilate the unit norm property of the parameter block.
解决这个问题需要让NumericDiffCostFunction
意识到LocalParameterization
.
一般来说,我们推荐使用AutoDiffCostFunction
而非NumericDiffCostFunction
,因为在cpp模板类使得自动微分非常有效,而采用数值微分却划不来,由于其数值误差会使得收敛变慢。(反正auto就是用了很吊的扫操作牛逼就行了)
DynamicNumericDiffCostFunction
template <typename CostFunctor, NumericDiffMethodType method = CENTRAL>
class DynamicNumericDiffCostFunction : public CostFunction {
};
NormalPrior
class NormalPrior : public CostFunction {
public:
// 保证b中的行数和A的列数一样
NormalPrior(const Matrix& A, const Vector& b);
virtual bool Evalute(double const* const parameters, double* residuals, double** jacobians) const;
};
LossFunction
class LossFunction {
public:
virtual void Evaluete(double s, double out[3]) const = 0;
};
LocalParameterization
class LocalParameterization {
public:
virtual ~LocalParameterization() {}
virtual bool Plus(const double* x, const double* delta, double* x_plus_delta) const = 0;
virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
//...
}
class IdentityParameterization
加法定义和一般的一样 Plus(x, delta x) = x + delta x
class QuaternionParameterization
class EigenQuaternionParameterization
Eigen存储quaternion的方式不同,是[x, y, z, w].
ProductParameterization
可以构建一个Cartesian product of localparameterization.
ProductParameterization se3_param(new QuaternionParameterization(), new IdentityTransformation(3));
AutoDiffLocalParameterization
struct QuaternionPlus {
template<typename T>
bool operator() (const T* x, const T* delta, T* x_plus_delta) const {
const T squared_norm_delta = delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
T q_delta[4];
if (squared_norm_delta > 0.0) {
T norm_delta = sqrt(squared_norm_delta);
const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
q_delta[0] = cos(norm_delta);
q_delta[1] = sin_delta_by_delta * delta[0];
q_delta[2] = sin_delta_by_delta * delta[1];
q_delta[3] = sin_delta_by_delta * delta[2];
} else {
q_delta[0] = T(1.0);
q_delta[1] = delta[0];
q_delta[2] = delta[1];
q_delta[3] = delta[2];
}
Quaternionproduct(q_delta, x, x_plus_delta);
return true;
}
};
Given this struct, the auto differentiated lcoal parameterization can now be constructed as
LocalParameterization* local_parameterization =
new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>; // global size and local size
Problem
Use Problem::AddResidualBlock()
and Problem::AddParameterBlock()
methods.
Problem::AddResidualBlock()
加入一个CostFunction,一个可选项的LossFunction,然后链接CostFunction和一系列的parameter block。
AddResidualBlock
ResidualBlockId Problem::AddResidualBlock(CostFunction*, LossFunction*, const vector<double*> parameter_blocks);
ResidualBlockId Problem::AddResidualBlock(CostFunction*, LossFunction*, double* x0, double* x1...);
CostFunction有parameter block的信息,这个函数会检查这些信息是否匹配。
LossFunction可以是NULL。
用户可以选择explicitly加入parameter block用``AddParameterBlock``,这会加入一些额外的检查。但是``AddResidualBlock``会implicitly加入不存在的parameter block。
Problem对象会默认拥有cost_function和loss_function的指针,他们会在problem对象存在的受活着。如果用户想自己销毁的话,可以在option里面设置。
尽管problem拥有cost_function和loss_function,它不会妨碍用户在其他residual block中重复使用。销毁器只会销毁cost_function和loss_function一次,不管多少residual block引用了他们。
???如果两个problem用了同一个parameter block,会有double free的问题么?
### AddParameterBlock
```cpp
void Problem::AddParameterBlock(double8 values, int size, LocalParameterization *);
加入合适的size的parameter block给problem。
重复的参数被加入会被ignore。
重复加入一个参数块但是定义不一样的size的结果是undefined。
Problem::RemoveResidualBlock
void Problem::RemoveResidualBlock(ResidualBlockId);
移除一个residual block,但是任何依赖的parameter不会被移除。
对应的cost function和loss function不会被立马删除,会在problem被销毁后。
如果Problem::Options::enable_fast_removal
为真,会移除会快(constant time),不然会扫描整个problem来看是否是valid residual。
WARNING: 会改变内部的顺序,导致雅克比和参差没法解析,如果是用evaluated jacobian的话,最好别这么做。
Problem::RemoveParameterBlock
void Problem::RemoveParameterBlock(double *values)
以来这个parameter block的residual block也会被移除。
WARNING和上述一样。
Others
void Problem::SetParameterBlockConstant(double* values);
void Problem::SetParameterBlockVaribale(double* values);
void Problem::SetParameterization(double* values, LocalParameterization*);
LocalParameterization* Problem::GetParameterization(double* values);
void Problem::SetParameterLowerBound(double* value, int index, double lower_bound);
void Problem::SetParameterUpperBound(double* value, int index, double upper_bound);
rotation.h
template <typename T>
void AngleAxisToQuaternion(T const *angle_axis, T* quaternion);
template <typename T>
void QuaternionToAngleAxis(T const *quaternion, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void RotationMatrixToAngleAxis(const MatrixAdapter<const T, row_stride, col_stride>&R, T* angle_axis);
template <typename T, int row_stride, int col_stride>
void AngleAxisToRotationMatrix(T const* angle_axis, const MatrixAdapter<T, row_stride, col_stride> &R)
template <typename T>
void RotationMatrixToAngleAxis(T const* R, T* angle_axis);
tempalte <typename T>
void AngleAxisToRotationMatrix(T const* angle_axis, T* R);
Ceres Solver 入门稍微多一点的更多相关文章
- Ceres Solver: 高效的非线性优化库(二)实战篇
Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看 ...
- Ceres Solver for android
最近开发中,需要对图片做一些处理与线性技术,这时就用到了Ceres Solver.如何把Ceres Solver集成到Android里呢? 官网给了一个解决方案,简洁明了: Downloa ...
- VINS(九)Ceres Solver优化(未完待续)
使用Ceres Solver库处理后端优化问题,首先系统的优化函数为
- Ceres Solver: 高效的非线性优化库(一)
Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间 ...
- [HeadFist-HTMLCSS学习笔记][第七章CSS入门:加一点样式]
CSS入门 style元素设置CSS 基本格式 <style type="text/css"> body { background-color: #eaf3da; } ...
- LeetCode 笔记系列15 Set Matrix Zeroes [稍微有一点hack]
题目:Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. Fol ...
- Android平台使用Ceres Solver
在Android平台上使用Ceres求解器,官方教程不明确,且编译过程遇到了很多问题. 环境 Ubuntu 18.04 源代码 https://github.com/Great-Keith/ceres ...
- 入门 uCOS 操作系统的一点建议
原创: 鱼鹰Osprey 鱼鹰谈单片机 3月2日 预计阅读时间: 4 分钟 对于想入门操作系统的读者,我的建议是先学 uCOS II.原因有以下几点: 1.最为重要的原因是网上相关资源非常丰富,这对 ...
- Ceres Solver 在win8+vs2013环境下的安装
参考博文:https://blog.csdn.net/wzheng92/article/details/79504709
随机推荐
- 2019/4/17 wen 注解、垃圾回收、多线程
- 利用递归解决“汉诺塔的移动”问题(使用python来做的,其它语言也行)
有a,b,c三个柱子,n个盘子. def move(n, a, b, c): if n == 1: print('move', a, '-->', c) else: move(n-1, a, c ...
- varnish 测试
安装 通过epel 源 yum 安装 [root@localhost varnish]# rpm -ql varnish /etc/logrotate.d/varnish /etc/varnish / ...
- STA 141A, Homework
STA 141A, Homework 2Due April 30th 2019 (by 8 am) Name:Student ID:Section:Names of your study mates: ...
- Java调用dll动态库
最近项目里使用java调用dll动态库,因此研究了一下这方面的东西. 使用的工具包如下 <dependency> <groupId>net.java.dev.jna</g ...
- Redis Index
Indexes 集群 主从模型 哨兵机制与RAFT算法 实践 单机多实例 开启Sentinel 存储 持久化 RDB 与 AOF 数据结构 内存管理 事务 并发问题 分布式锁 整体图 中间件 Jedi ...
- Java 连接 MySQL 数据库
最近想学习一下 Java 连接 MySQL 数据库,于是有了这样的一些问题&解决办法. 首先是解决 JDBC(Java Data Base Connectivity)驱动问题,因为默认安装的J ...
- 20165306 Exp3 免杀原理与实践
Exp3 免杀原理与实践 一.实践内容概述 1.正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,加壳工具,使用shellcode编程 2.通过组合应用各种技 ...
- 剑指offer:反转链表
问题描述 输入一个链表,反转链表后,输出新链表的表头. c++代码 /* struct ListNode { int val; struct ListNode *next; ListNode(int ...
- Java内存模型探秘
1.Java内存模型概述 Java内存模型是一种抽象概念,不是真实存在的.主要定义了程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存取出变量这样的底层细节.注意:这里的变量仅包括实例字段 ...