安装:install.packages("ggplot2")

加载:library(ggplot2)

Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)

其中:

  • data: 数据集,主要是data frame;

  • Aesthetics: 美学映射,比如将变量映射给x,y坐标轴,或者映射给颜色、大小、形状等图形属性;

  • Geometry: 几何对象,比如柱形图、直方图、散点图、线图、密度图等。

ggplot2中有两个主要绘图函数:qplot()以及ggplot()。

  • qplot(): 顾名思义,快速绘图;

  • ggplot():此函数才是ggplot2的精髓,远比qplot()强大,可以一步步绘制十分复杂的图形。

主要介绍ggplot

1、散点图

  ggplot(data=df, aes(x=mpg, y=wt))+  geom_point()

改变点形状、大小、颜色等属性

ggplot(data=df, aes(x=mpg, y=wt))+geom_point(color="blue", size=2, shape=23

使用数据集mtcars, 先创建一个ggplot图层

b <- ggplot(data = mtcars, aes(x=wt, y=mpg))

b + geom_point(aes(color = factor(cyl), shape = factor(cyl)))

自定义颜色

b+geom_point(aes(color=factor(cyl), shape=factor(cyl)))+  scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))+theme_classic()

若图例为连续性,

三类连续型颜色梯度(即渐变色)。

  • scale_colour_gradient()和scale_fill_gradient():双色梯度。顺序由低到高,参数low 和high 用于控制此梯度两端颜色;scale_colour_gradient(low="blue", "red")
  • scale_colour_gradient2()和scale_fill_gradient2():三色梯度。顺序为低-中-高,参数low和high 用于控制此梯度两端颜色,中点默认值是0,可以用参数midpoint 将其设置为任意值
  • scale_colour_gradientn()和scale_fill_gradientn():自定义的n 色梯度。此标度需要赋给参数colours 一个颜色向量。

若为离散型,如

 一种即scale_colour_hue()、cale_fill_hue();另一种scale_colour_ brewer ()、scale_fill_ brewer () ,要想了解所有的调色板,可以使用RColorBrewer::display.brewer.all()查看.

用参数palette=”调色板名称或者数字” 如scale_colour_ brewer (palette=2) 等价于scale_colour_ brewer (palette=“'YIOrBr'”)

修改坐标轴

xlab("名称") 以及ylab(“名称”)

去掉坐标轴: labs(x=Null, y=Null),还可以增加坐标,标题,图例

  1. labelled <- base +

  2. labs(

  3. x = "City mileage/gallon",  ##x轴

  4. y = "Highway mileage/gallon",  ##y轴

  5. colour = "Cylinders",   ##图例

  6. title = "Highway and city mileage are highly correlated"。##标题

  7. )

 

xlim()和 ylim() 可用来限制横轴或纵轴的宽度/量程/范围/最大值最小值等

分面(Facetting)

分面有两种主要类型:网格(grid)和包装(wrapped)。相较而言,Wrapped更常用。

使用方法是添加 facet_wrap()函数,参数写法是 ~+变量,例如:

  1. ggplot(mpg, aes(displ, hwy)) +

  2.  geom_point() +

  3.  facet_wrap(~class)

ggtitle(“”)可用来添加标题

将变量转化为因子

如 变量a。      a <- factor(a, levels = c(0,1), labels=c("Automatic", "Manual"))    #"Automatic", "Manual" 是在原始文本的数据

添加光滑曲线

函数geom_smooth(),4个参数:;

1⃣️method: 有lm,glm, smooth, rlm和gam;

2⃣️formula:在光滑函数中使用的公式,包括y~x(默认), y~log(x)等;

3⃣️se:绘制置信区间(TRUE/FALSE)。默认TRUE;

4⃣️level:使用的置信区间水平(默认95%);

5⃣️fullrange:指定拟合应涵盖图(TRUE), 或仅仅是数据(FALSE)。默认为FALSE。。   不太懂

例子来一波:      geom_smooth(method = lm, formula = y~poly(x,2), se = FALSE).  lm方法绘制, 拟合一个二次多项式回归。置信区间不显示。

自定义坐标轴

scale_y_continuous()。和scale_x_continuous().    breaks= 所显示的刻度数, labels=。刻度显示的标签, limits=控制要展示的值的范围

ggplot(data, aes(BC, YK)) + geom_point() + scale_y_continuous(breaks=c(5,10,15), labels=c("a", "b", "c"))

图例的位置

决定放哪儿的参数是: theme()中的 legend.position。

默认状态是 theme(legend.position="right")

然后我们可以通过“right”, “left”, “top”, “bottom”,把他放在上/下/左,或者去掉“none” 也可以使用具体数字

theme(legend.position=c(1,8))

改变图例的题目和标签:

p+scale_colour_hue("what does it eat?",labels=c("plants","meat","both","don't know"));  # what。。为图例title, labels中的为图例text

另一种我经常用:可以改变颜色和图例 p + scale_color_manual(values=c("red","blue","yellow","black","red","green"),  name = "fold", breaks=c(">2",">3",">5",">6","1","4"),labels=c("1","2","3","4","5","6")).         ###values=c() 改变颜色,  name=图例title,breaks 以前图例上text,labels 更改新的图例text

标尺(scale)

可以使用标尺将带有因子的水平的 视觉线索(如颜色,形状,线条,尺寸和透明度)关联起来

scale_color_manual(values=c("颜色", “颜色”))函数修改对应因子的颜色

如ggplot(data, aes(YC, BC, color=factor(fold))) + geom_point(size= 2) + scale_color_manual(values=c("orange", "olivedrab", "navy"))

此外,还可以通过scale_color_brewer(palette="颜色集合")      颜色集合(“Set2,Set3, Pastell等”),想获得更多的颜色集合可以使用:

library(RcolorBrewer)

display.brewer.all()

主题(theme)

theme()函数中的选项可以让我们调整字体、背景、颜色和网络线等。主题可以使用一次,也可以保存起来应用到多个图中。

mytheme() <- theme(plot.title = element.text(face = "bold.italic", size= "14", color= "brown"),    ##plot.title 标题;element.text 修改文本; face:字体,size:大小,colosr

axis.title= axis.title=element_text(face = "italic", size = "16", color="blue"),    ##axis.title.  修改横纵坐标题目

      axis.text=element_text(face="bold", size = 9, color = "red"),   ## 坐标轴文字

      panel.background = element_rect(fill = "white", color="red"),  ##panel.background 面板背景; fill:填充色;color 面板到框的颜色

      panel.grid.major.y = element_line(color = "red", linetype = 1),  ## 面板y轴大网格线

      panel.grid.minor.y = element_line(color = "red", linetype = 1),   ##面板y轴小网格线

      panel.grid.minor.x = element_blank()),             ##面板x轴小网格线,,为空

      legend.position = "top")              ##图例的位置,“right”, “left”, “top”, “bottom”,把他放在上/下/左,或者去掉“none” 也可以使用具体数字

theme(legend.position=c(1,8))

ggplot(data, aes(YC, BC, color=factor(fold))) + geom_point(size= 2) + scale_color_brewer(palette="Set2") + labs(title="This is title") + scale_y_continuous(breaks=c(5,10,15,20), labels=c("oen","two", "three","four")) + mytheme

形成的图

多重图

利用gridExtr包中的grid.arrange()函数,将几个图形合并为一个

如有p1, p2, p3图形

library(gridExtra)

grid.arrange(p1,p2,p3, ncol=3)。以列的形式

ggplot的两种保存方式

1、

  1. pdf("output.pdf", width = 6, height = 6)

  2. ggplot(mpg, aes(displ, cty)) + geom_point()

  3. dev.off()

2、

  1. myplot <- ggplot(mpg, aes(displ, cty)) + geom_point()

  2. ggsave(file = "mygrafh.png", plot = myplot, width =5, height =4) ##在当前路径下将myplot保存名为mygrafh.png的5英寸✖️4英寸PNG格式图片。

显然第二种方法更加方便简洁,不过我们需要设置以下参数:

  • path设定图形储存路径。 ggsave() 可以生成以下格式: .eps.pdf.svg.wmf,.png.jpg.bmp, and .tiff.

  • width和 height设置绝对尺寸的大小,可以精确控制尺寸

  • 分辨率 dpi默认值300,你可以修改为600。

ggplot的更多相关文章

  1. ggplot绘图学习笔记

    0.查看R的系统帮助文档 标度 scale breaks, labels, limits, labs dose <- c(20, 30, 40, 45,60) drugA <- c(16, ...

  2. How To Use ggplot in ggplot2?

    1.What is ggplot2 ggplot2基本要素 数据(Data)和映射(Mapping) 几何对象(Geometric) 标尺(Scale) 统计变换(Statistics) 坐标系统(C ...

  3. R语言-ggplot初级

    ggplot2简介: 在2005年开始出现,吸取了基础绘图系统和lattice绘图系统的优点,并利用一个强大的模型来对其进行改进,这一模型基于之前所述的一系列准则, 能够创建任意类型的统计图形 1.导 ...

  4. ggplot的boxplot添加显著性 | Add P-values and Significance Levels to ggplots | 方差分析

    参考:Add P-values and Significance Levels toggplots 多组比较,挑选感兴趣的显示显著性. data("ToothGrowth") he ...

  5. ggplot ggplot2 画图

    折线图-ggplot2  http://blog.163.com/yugao1986@126/blog/static/6922850820131161531421/http://blog.sina.c ...

  6. ggplot饼图

    目录: 原始图样 如何去除饼图中心的杂点 如何去除饼图旁边的标签 如何去掉左上角多出来的一横线 如何去掉图例的标题,并将图例放到上面 如何对图例的标签加上百分比 如何让饼图的小块按顺时针从大到小的顺序 ...

  7. R笔记4:ggplot绘制商务图表--玫瑰图

    我们说Excel有难度的图表,可以考虑ggplot2是否更方便,本帖的例子就是用ggplot做玫瑰图. Excel做玫瑰图有一定难度,可以使用雷达图或圆环图来构建,我的博客上曾有多个帖子讨论这个,见 ...

  8. ggplot map

    ggplot {ggplot2} R Documentation Create a new ggplot Description ggplot() initializes a ggplot objec ...

  9. 数据分析python应用到的ggplot(二)

    还是优达学院的第七课 数据:https://s3.amazonaws.com/content.udacity-data.com/courses/ud359/hr_by_team_year_sf_la. ...

随机推荐

  1. windows程序设计 获取磁盘容量

    //磁盘分区的总容量(字节)=总簇数*每簇扇区数*每扇区字节数 //磁盘分区的空闲空间(字节)=空闲簇数*每簇扇区数*每扇区字节数 BOOL GetDiskFreeSpace( LPCTSTR lpR ...

  2. Go 初体验 - 并发与锁.3 - 竞态

    竞态,就是多个协程同时访问临界区,由并发而产生的数据不同步的状态. 这个说的有点low,没办法,我就是这么表达的,官方的请度娘. 先上代码: 输出: 为何不是1000?就是因为竞态,发生竞态后,最终的 ...

  3. 接口自动化测试持续集成--Soapui接口功能测试断言

    断言也就是判断实际结果与预期结果是否相等,如果相等测试通过,否则测试失败,自动化测试不管是UI,Services还有unit都需要做断言. 一.添加断言步骤的组件 二.设置断言 设置常用断言的三种方式 ...

  4. 系统学习PHP的一些思路

    作为一名新进的PHPer,迫切的想提高自己的编码水平,目前市面上几乎没有高手来给新手指点出一条相对靠谱的途径. 首先,面对PHP众多杂乱无章的各种函数,到底该怎么去理清其各者之间的关系,经过一段时间的 ...

  5. asp.net 去掉小数点后面多余的0,本身为0则不显示

    很多时候,比如gridview内,不想现实从数据库带出的多余小数 ,比如 4.01000 ,可显示为 4.01 如果是 0.00000, 则显示为空白 /// <summary> /// ...

  6. ubuntu+anaconda+mxnet环境配置

    为了insightface和mxnet较劲的一天 mxnet环境: 官网下载pyhton2.7版本的anaconda,随便找个安装教程 sh Anacondaxxxx.sh #一路默认即可,第二个回车 ...

  7. An owner of this repository has limited the ability to open a pull request to users that are collaborators on this repository.

    git 无法发起:pull request,提示:An owner of this repository has limited the ability to open a pull request ...

  8. Flask-Script

    其实本章就是为下一章做的铺垫啦,但是也要认真学习哦 Flask-Script 从字面意思上来看就是 Flask 的脚本 Django的启动命令是:python manager.py runserver ...

  9. python爬取指定新闻

    作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2894 给定一篇新闻的链接newsUrl,获取该新闻的全部信息 标题 ...

  10. volatile CAS区别