python实现汉诺塔问题
汉诺塔问题可以简单描述成为将a柱子上的圆盘按一定规则借助b柱子完美地复制到c柱子上。现假设有a,b,c三根柱子,a柱子上的圆盘从上到下依次标号为1,2,3,……,n,且为递增状态。规则:每次移动一个盘子,且只能让小的放在大的上面。目标:移动到c柱子上,与原来a上的状态相同。
算法步骤:(1)将a上的除最下面一个盘子以外的n-1的圆盘借助c柱子移动到b柱子上。
(2)将a上剩下的圆盘(即最下面的圆盘)移动到c柱子上。
(3)将b上的刚才一过来的n-1个圆盘再借助a柱子移动到c上去。
(4)任务完成。
import turtle
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2]
def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
python实现汉诺塔问题的更多相关文章
- python 游戏 —— 汉诺塔(Hanoita)
python 游戏 —— 汉诺塔(Hanoita) 一.汉诺塔问题 1. 问题来源 问题源于印度的一个古老传说,大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...
- python解决汉诺塔问题
今天刚刚在博客园安家,不知道写点什么,前两天刚刚学习完python 所以就用python写了一下汉诺塔算法,感觉还行拿出来分享一下 首先看一下描述: from :http://baike.baidu. ...
- 【学习】Python解决汉诺塔问题
参考文章:http://www.cnblogs.com/dmego/p/5965835.html 一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好! ...
- Python实现汉诺塔问题的可视化(以动画的形式展示移动过程)
学习Python已经有一段时间了,也学习了递归的方法,而能够实践该方法的当然就是汉诺塔问题了,但是这次我们不只是要完成对汉诺塔过程的计算,还要通过turtle库来体现汉诺塔中每一层移动的过程. 一.设 ...
- python递归——汉诺塔
汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...
- Python之汉诺塔递归运算
汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆 ...
- python 实现汉诺塔
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺 ...
- python实现汉诺塔
经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...
- python实现汉诺塔移动
汉诺塔问题 汉诺塔是根据一个传说形成的一个问题.汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大 ...
随机推荐
- 【转】Powershell与jenkins集成部署的运用(powershell运用)
powershell简介: 远程管理采用的一种新的通信协议,Web Services for Management,简称WS-MAN它通过http或者https进行工作,WS-WAN的实现主要基于一个 ...
- racle SQL性能优化
(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效): Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先 ...
- 二进制方式安装mysql5.7.24
1.实验环境 [root@test-mysql ~]# cat /etc/redhat-release CentOS Linux release 7.3.1611 (Core) 2.浏览器下载mysq ...
- JAVA函数的重载和重写
一.什么是重载(overlording) 在JAVA中,可以在同一个类中存在多个函数,函数名称相同但参数列表不同.这就是函数的重载(overlording).这是类的多太性表现之一. 二.重载的作用: ...
- Oracle免安装绿色版-PLSQL连接报12154
在环境变量添加 TNS_ADMIN 值是你的免安装客户端中sqlnet.ora tnsnames.ora 所在的目录 参考地址:https://blog.csdn.net/feng_na/art ...
- css img 隐藏的边距
因为图片存在浏览器默认的边距,正常的情况下,增加这样的属性来消除多余的边距或者多1px的情况 img { display: block; border: node; } 但是这样的话img在父元素里设 ...
- Linux代理服务器—squid正向代理实验
1.代理服务器squid简介 Squid cache(简称为Squid)是一个流行的自由软件(GNU通用公共许可证)的代理服务器和Web缓存服务器.Squid有广泛的用途,从作为网页服务器的前置cac ...
- 基于ROS完成寻迹运动
安装opencv功能包: $ sudo apt-get install ros-indigo-version-opencv libopencv-dev python-opencv 检测指示线: #! ...
- flutter packages.
connectivity This plugin allows Flutter apps to discover network connectivity and configure themselv ...
- haproxy 配置文件分析
LOG 功能: 编辑/etc/rsyslog.conf 配置文件: # Provides UDP syslog reception $ModLoad imudp #需要启用 $UDPServerRun ...