子树修改+路径修改+单点查询

树链剖分+区间维护即可

由于只有单点查询,我直接用了odt,复杂度还行

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define fi first
#define se second
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define rep(ii,a,b) for(int ii=a;ii<=b;++ii)
#define per(ii,a,b) for(int ii=b;ii>=a;--ii)
#define forn(ii,x) for(int ii=head[x];ii;ii=e[ii].next)
using namespace std;
const int maxn=5e5+20,maxm=2e6+10;
const int INF=0x3f3f3f3f;
const ll mod=1e9+7;
//head
int casn,n,m,k;
int num[maxn];
namespace odt{
struct segnode{
int l,r;mutable int val;
bool operator<(const segnode &b)const {return l<b.l;}
};
set<segnode> nd;
#define iter set<segnode>::iterator
auto split(int pos){
auto it=nd.lower_bound({pos,pos,0});
if(it!=nd.end()&&it->l==pos) return it;
it--;
int l=it->l,r=it->r,val=it->val;
nd.erase(it);nd.insert({l,pos-1,val});
return nd.insert({pos,r,val}).fi;
}
void update(int l,int r,int val){
auto itr=split(r+1);auto itl=split(l);
nd.erase(itl,itr);nd.insert({l,r,val});
}
int query(int pos){
auto it=nd.lower_bound({pos,pos,0});
if(it!=nd.end()&&it->l==pos) return it->val;
it--;
return it->val;
}
} namespace gg{
struct node{int to,next;}e[maxn<<1];
int head[maxn],nume,mp[maxn];
void add(int a,int b){e[++nume]={b,head[a]};head[a]=nume;}
int ltop[maxn],fa[maxn],deep[maxn];
int sz[maxn],remp[maxn];
int son[maxn],cnt,out[maxn];
void dfs1(int now,int pre,int d){
deep[now]=d,fa[now]=pre,sz[now]=1;son[now]=0;
forn(i,now) {int to=e[i].to;
if(to!=pre){
dfs1(to,now,d+1);sz[now]+=sz[to];
if(sz[to]>sz[son[now]]) son[now]=to;
}
}
}
void dfs2(int now,int pre,int sp){
ltop[now]=sp;mp[now]=++cnt;remp[cnt]=now;
if(son[now]) dfs2(son[now],now,sp);
forn(i,now){
int to=e[i].to;
if(to!=son[now]&&to!=pre) dfs2(to,now,to);
}
}
void update1(int a){odt::update(mp[a],mp[a]+sz[a]-1,1);}
void update2(int now){
while(now>1){
int l=max(mp[ltop[now]],2),r=mp[now];
if(l<=r) odt::update(l,r,0);
now=fa[ltop[now]];
}
}
} int main() {
IO;
cin>>n;
odt::nd.insert({1,n,0});
m=n-1;
while(m--){int a,b;
cin>>a>>b;
gg::add(a,b);
gg::add(b,a);
}
gg::dfs1(1,1,0);
gg::dfs2(1,0,1);
cin>>m;
while(m--){int a,b;
cin>>a>>b;
if(a==1) gg::update1(b);
if(a==2) gg::update2(b);
if(a==3) cout<<odt::query(gg::mp[b])<<endl;
}
}

codeforces 343D 树剖后odt维护的更多相关文章

  1. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

  2. gym 102059A 树链剖分后odt维护区间

    题意 一棵树 多次修改,每次修改一个点到根的所有边的颜色,并询问现在有哪些颜色染了恰好$m$条边 题解: 稍加思考可以知道,从某个点到根节点的颜色数,均摊复杂度很低,因此,可以考虑珂朵莉树维护重链剖分 ...

  3. CodeForces - 343D 树链剖分

    题目链接:http://codeforces.com/problemset/problem/343/D 题意:给定一棵n个n-1条边的树,起初所有节点权值为0,然后m个操作. 1 x:把x为根的子树的 ...

  4. P2486 [SDOI2011]染色(树剖)区间覆盖+区间的连续段

    https://www.luogu.org/problemnew/show/P2486 值的一看https://www.cnblogs.com/Tony-Double-Sky/p/9283262.ht ...

  5. BZOJ4196 [Noi2015]软件包管理器 【树剖】

    题目 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件 ...

  6. BZOJ3531 [Sdoi2014]旅行 【树剖 + 线段树】

    题目 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足 从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰.为了方便,我们用 ...

  7. 2019牛客暑期多校训练营(第六场)C:Palindrome Mouse(回文树+树剖)

    题意:给定字符串Str,求出回文串集合为S,问S中的(a,b)满足a是b的子串的对数. 思路:开始和题解的思路差不多,维护当前后缀的每个串的最后出现位置,但是不知道怎么套“最小回文分割”,所以想到了树 ...

  8. P4315 月下“毛景树”[树剖]

    题目描述 毛毛虫经过及时的变形,最终逃过的一劫,离开了菜妈的菜园. 毛毛虫经过千山万水,历尽千辛万苦,最后来到了小小的绍兴一中的校园里. 爬啊爬~爬啊爬毛毛虫爬到了一颗小小的"毛景树&quo ...

  9. BZOJ 4712 洪水 (线段树+树剖动态维护DP)

    题目大意:略 题目传送门 数据结构好题,但据说直接上动态DP会容易处理不少,然而蒟蒻不会.一氧化碳大爷说还有一个$log$的做法,然而我只会$log^{2}$的.. 考虑静态时如何处理,设$f[x]$ ...

随机推荐

  1. C#,WPF中使用多文本显示数据,并对其数据进行关键字高亮等操作

    需求:针对多文本信息显示,我们需要对其内容中的某些关键字或者某行进行高亮显示,并用不同颜色显示. 分析:在C#中,首先要进行多文本信息显示,可以RichTextBox(不要使用TextBox)控件,该 ...

  2. MYSQL Statement violates GTID consistency: Updates to non-transactional tables can only be done in either autocommitted statements or single-statement transactions, and never in the same statement as

    [2019-04-21 10:17:20] [ERROR] [org.hibernate.engine.jdbc.spi.SqlExceptionHelper:144] Statement viola ...

  3. P2801 教主的魔法(分块入门)

    两个月之前听yyr学长讲的分块,感觉是个很神奇的暴力,但到现在还是懵的一匹 #include<bits/stdc++.h> using namespace std; ; int belon ...

  4. HashMap源码解读(jdk1.8)

    1.相关常量 默认初始化容量(大小) static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 最大容量 static final int M ...

  5. UOJ14 UER #1 DZY Loves Graph(最小生成树+并查集)

    显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销 ...

  6. Quartus16.1布线优化选择,重编译可能会满足时序

    流程 (1)在默认的优化编译下,时序违例. (2)在assignments中选择setting. (3)根据需求,选择不同的优化方式,目前选择性能优先. (4)可以发现时序满足要求. 以上.

  7. [GoogleBlog]new-approach-to-china

    https://googleblog.blogspot.com/2010/01/new-approach-to-china.html

  8. CF802C Heidi and Library (hard)

    题目描述 你有一个容量为k的空书架,现在共有n个请求,每个请求给定一本书ai,如果你的书架里没有这本书,你就必须以ci的价格购买这本书放入书架.当然,你可以在任何时候丢掉书架里的某本书.请求出完成这n ...

  9. YUI Compressor

    简介 根据雅虎卓越性能团队的说法,40%到60%的雅虎用户拥有空闲缓存体验,所有页面浏览量中约有20%是使用空缓存完成的(请参阅Tenni Theurer在YUIBlog上的这篇文章)有关浏览器缓存使 ...

  10. ACM-ICPC 2018 徐州赛区网络预赛 HRyuji doesn't want to study 树状数组

    题目链接:https://nanti.jisuanke.com/t/A2007 题目大意:有一个序列含有n个数a[1],a[2],a[3],……a[n],有两种操作: 第一种操作:k=1,l,r,询问 ...