题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。

n<=39

解析

(1)递归方式

对于公式f(n) = f(n-1) + f(n-2),明显就是一个递归调用,因此根据f(0) = 0f(1) = 1我们不难写出如下代码:

 public int Fibonacci(int n) {
if(n == 0 || n == 1){
return n;
}
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
存在问题

性能浪费,存在大量重复运算;n增大时,会产生栈溢出

(2)数组方式
 public int fibonacci(int n){
int[] fibonacci=new int[n];
fibonacci[0]=0;
fibonacci[1]=1;
for(int i=2;i<n;i++)
fibonacci[i]=fibonacci[i-1]+fibonacci[i-2];
return fibonacci[n-1];
}

运行次数减少,但是空间换时间,空间占用增大

(3)动态规划

动态规划就在使用递归调用自上而下分析过程中发现有很多重复计算的子过程,于是采用自下而上的方式将每个子状态缓存下来,这样对于上层而言只有当需要的子过程结果不在缓存中时才会计算一次,因此每个子过程都只会被计算一次。

public int Fibonacci(int n) {
int preNum=1;
int prePreNum=0;
int result=0;
if(n==0)
return 0;
if(n==1)
return 1;
for(int i=2;i<=n;i++){
result=preNum+prePreNum;
prePreNum=preNum;
preNum=result;
}
return result; }
(4)尾递归

什么是尾递归 ?

在计算机科学里,尾调用是指一个函数里的最后一个动作是一个函数调用的情形即这个调用的返回值直接被当前函数返回的情形。这种情形下称该调用位置为尾位置。若这个函数在尾位置调用本身(或是一个尾调用本身的其他函数等等),则称这种情况为尾递归,是递归的一种特殊情形。尾调用不一定是递归调用,但是尾递归特别有用,也比较容易实现。

尾调用的重要性在于它可以不在调用栈上面添加一个新的堆栈帧——而是更新它,如同迭代一般。尾递归因而具有两个特征: 调用自身函数(Self-called); 计算仅占用常量栈空间(Stack Space)。 而形式上只要是最后一个return语句返回的是一个完整函数,它就是尾递归。

简单理解,就是处于函数尾部的递归调用本身的情形下,前面的变量状态都不需要再保存了,可以释放,从而节省很大的内存空间。在前面的代码中,明显在调用递归调用Fibonacci(n-1)的时候,还有Fibonacci(n-2)没有执行,需要保存前面的状态,因此开销较大的。

public int result(int n) {
return Fibonacci2(n,0, 1);
} int Fibonacci2(int n, int a, int b) {
if (n==0) return a;
else {
return Fibonacci2(n-1, b, a+b);
}
}

派生

(1)青蛙跳台阶(每次跳1或2个台阶)

  思路:跳n个台阶的第一步只能有两种跳法,1阶或2阶梯,第一次1,后面的跳法和n-1个台阶的一样多f(n-1),跳2的,后面有f(n-2)个跳法;所以有f(n) = f(n-1)+f(n-2)

(2)变态青蛙跳台阶(每次跳1、2、3、、、、n个台阶)

  思路和青蛙跳台阶相似;结论为f(n) =  f(n-1)+f(n-2)+f(n-3)+...+f(n-n);

| 1       ,(n=0 )

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)
public int JumpFloorII(int target) {
if (target <= 0) {
return -1;
} else if (target == 1) {
return 1;
} else {
return 2 * JumpFloorII(target - 1);
}
}

优化,可直接用乘方运算或位运算代替递归

(3)矩形覆盖

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:有了之前的历练,我们能很快的写出递归版本:先竖着放一个或者先横着放两个,剩下的交给递归处理

【斐波那契数列】java探究的更多相关文章

  1. 斐波那契数列-java编程:三种方法实现斐波那契数列

    题目要求:编写程序在控制台输出斐波那契数列前20项,每输出5个数换行 斐波那契数列指的是这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … 这个数列 ...

  2. 斐波那契数列—java实现

    最近在面试的时候被问到了斐波那契数列,而且有不同的实现方式,就在这里记录一下. 定义 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

  3. 斐波那契数列—Java

    斐波那契数列想必大家都知道吧,如果不知道的话,我就再啰嗦一遍, 斐波那契数列为:1 2 3 5 8 13 ...,也就是除了第一项和第二项为1以外,对于第N项,有f(N)=f(N-1)+f(N-2). ...

  4. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  5. 斐波那契数列-java实现

    1,1,2,3,5,8,13,21...... 以上的数列叫斐波那契数列,今天的面试第一题,输出前50个,这里记录下. 方式一 package com.geenk.demo.my; /** * @au ...

  6. 07.斐波那契数列 Java

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 思路 递归 若n<=2;返回n; 否则,返回Fibonacci ...

  7. 《剑指offer》面试题9 斐波那契数列 Java版

    书中方法一:递归,这种方法效率不高,因为可能会有很多重复计算. public long calculate(int n){ if(n<=0){ return 0; } if(n == 1){ r ...

  8. 用HashMap优化斐波那契数列 java算法

    斐波那契是第一项为0,第二项为1,以后每一项是前面两项的和的数列. 源码:Fibonacci.java public class Fibonacci{ private static int times ...

  9. 斐波那契数列(Java实现)

    描述 一个斐波那契序列,F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) (n>=2),根据n的值,计算斐波那契数F(n),其中0≤n≤1000. 输入 输入 ...

  10. 斐波那契数列 Java 不同的实现方法所需要的时间比较

    # 首先我们直接看一个demo以及他的结果 public class QQ { public static void main(String[] args) throws ParseException ...

随机推荐

  1. python vs vscode问题汇总

    最近在学工程目录章节的时候遭遇了个把 vscode目录管理 造成的问题, 当然第一大原因是: 初学者使用vscode的时候没有将环境设置好..... 闹了好几天的脾气, 这两天才整理好..... 这事 ...

  2. Windows10用fiddler抓包Android应用(解决手机设置代理后无法上网,设置只抓app包)

    1.环境准备 1.电脑上安装fiddler 2.手机和电脑在同一个局域网内 2.设置 1.fiddler>Tools>Fiddler Options>Connections 勾选Al ...

  3. Git SSL公钥密钥生成

    下面教大家简单易懂的五步配置好密钥 第一次配置ssh 和ssl git config --global --list 查看git的配置 步骤: 1. git config --global user. ...

  4. SQLServer表、列备注管理

    在开发时,为了方便,在SQL SERVER库内对表名.列名进行备注,但在DB部署客户时,想一次清理上述备注值. 特编写如下 SQL,一次清除上述备注内容: declare @table nvarcha ...

  5. IaaS,PaaS和SaaS

    云计算的三种服务模式:IaaS,PaaS和SaaS IaaS: Infrastructure-as-a-Service(基础设施即服务)是第一层. PaaS: Platform-as-a-Servic ...

  6. 关于docker jenkins启动时失败的问题处理

    最近在做持续集成,然后使用docker 运行jenkins docker run -d  -p 8088:8080 -p 50000:50000 -v /home/docker/jenkins_hom ...

  7. 《SpringMVC从入门到放肆》十二、SpringMVC自定义类型转换器

    之前的教程,我们都已经学会了如何使用Spring MVC来进行开发,掌握了基本的开发方法,返回不同类型的结果也有了一定的了解,包括返回ModelAndView.返回List.Map等等,这里就包含了传 ...

  8. 4.再来看看逆向——OD的简介

    目录 1.前言 2.一些设置和配置 3.开始了解OD 代码窗口 数据窗口 小端序问题 前言 前3节主要写了恶意代码用到的手段,接下来先写一下关于逆向调试的一些内容.毕竟逆向比较难理解一点. 一些配置和 ...

  9. protobuf是什么?

      ProtoBuf (Google Protocol Buffer)是由google公司用于数据交换的序列结构化数据格式,具有跨平台.跨语言.可扩展特性,类型于常用的XML及JSON,但具有更小的传 ...

  10. mybatis3源码阅读之SqlSessionFactoryBuilder

    /** 构造器,根据配置或者代码生成SqlSessionFactory,采用分布构建的Builder模式 /* public class SqlSessionFactoryBuilder { /** ...