package ML.DataType;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.*;
import org.apache.spark.mllib.linalg.distributed.*;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils; import java.util.Arrays; /**
* TODO
*
* @ClassName: DataType
* @author: DingH
* @since: 2019/4/3 10:06
*/
public class DataType {
public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("Datatype");
JavaSparkContext javaSparkContext = new JavaSparkContext(conf); /**
* @Title: vectors.dense方法生成向量,sparse生成稀疏向量。第一个3是向量的大小,第二个列表是不为0的下表,第三个是对应的value.
*/
Vector dense = Vectors.dense(1.0, 0.0, 3.0);
Vector sparse = Vectors.sparse(3, new int[]{0, 2}, new double[]{1.0, 3.0}); /**
* @Title: 对向量进行标记,1.0为正,0.0为负
*/
LabeledPoint labeledPoint = new LabeledPoint(1.0, dense);
LabeledPoint labeledPoint1 = new LabeledPoint(0.0, sparse); /**
* @Title: libSVM文件: lable1 index1:value1 index2:value2
*/
JavaRDD<LabeledPoint> labeledPointJavaRDD = MLUtils.loadLibSVMFile(javaSparkContext.sc(), "/data...").toJavaRDD(); /**
* @Title: matricex.dense生成矩阵。3*2的矩阵 列式优先
* [1.0 2.0
* 3.0 4.0
* 5.0 6.0]
*/
Matrix dense1 = Matrices.dense(3, 2, new double[]{1.0, 3.0, 5.0, 2.0, 4.0, 6.0}); /**
* @Title: matricex.sparse生成稀疏矩阵。3*2的矩阵。第三个参数和第四个参数对应为不为0的元素。
* [9 0
* 0 6
* 0 8] 第三个参数: 1-0=1,3-1=2,每列不为0的元素分别是1个和2个。 第四个参数,从头开始遍历行,不为0的行。
*/
Matrix sparse1 = Matrices.sparse(3, 2, new int[]{0, 1, 3}, new int[]{0, 2, 1}, new double[]{9, 6, 8}); /**
* @Title: Rowmatrix
*/
JavaRDD<Vector> parallelize = javaSparkContext.parallelize(Arrays.asList(
Vectors.dense(1, 2, 3),
Vectors.dense(2, 3, 4),
Vectors.dense(3, 4, 5)
));
RowMatrix rowMatrix = new RowMatrix(parallelize.rdd());
long l = rowMatrix.numRows();
long l1 = rowMatrix.numCols();
QRDecomposition<RowMatrix, Matrix> rowMatrixMatrixQRDecomposition = rowMatrix.tallSkinnyQR(true); /**
* @Title: IndexedRowMatrix
*/
JavaRDD<IndexedRow> parallelize1 = javaSparkContext.parallelize(Arrays.asList(
new IndexedRow(1, dense),
new IndexedRow(2, dense),
new IndexedRow(3, dense)
));
IndexedRowMatrix indexedRowMatrix = new IndexedRowMatrix(parallelize1.rdd());
long l2 = indexedRowMatrix.numCols();
long l3 = indexedRowMatrix.numRows();
RowMatrix rowMatrix1 = indexedRowMatrix.toRowMatrix(); /**
* @Title: CoordinateMatrix
*/
JavaRDD<MatrixEntry> parallelize2 = javaSparkContext.parallelize(Arrays.asList(
new MatrixEntry(0, 1, 3),
new MatrixEntry(1, 3, 1),
new MatrixEntry(2, 1, 1)
));
CoordinateMatrix coordinateMatrix = new CoordinateMatrix(parallelize2.rdd());
long l4 = coordinateMatrix.numCols();
long l5 = coordinateMatrix.numRows();
IndexedRowMatrix indexedRowMatrix1 = coordinateMatrix.toIndexedRowMatrix(); /**
* @Title: BlocakMatrix 。 toBlockMatrix可以设置参数,规定row,col的大小,默认1024*1024
*/
BlockMatrix cache = indexedRowMatrix.toBlockMatrix().cache();
BlockMatrix cache1 = coordinateMatrix.toBlockMatrix().cache();
cache.validate();
BlockMatrix multiply = cache.transpose().multiply(cache);
}
}

spark MLlib DataType ML中的数据类型的更多相关文章

  1. spark mllib和ml类里面的区别

    mllib是老的api,里面的模型都是基于RDD的,模型使用的时候api也是有变化的(model这里是naiveBayes), (1:在模型训练的时候是naiveBayes.run(data: RDD ...

  2. Spark MLlib数据类型

        MLlib支持几种数据类型:本地向量(local vectors),和存储在一个简单机器中的矩阵(matrices),以及由一个或多个RDDs组成的分布式矩阵. 1,本地向量(Local Ve ...

  3. 在Java Web中使用Spark MLlib训练的模型

    PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨 ...

  4. Spark的MLlib和ML库的区别

    机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.其目标是使实际的机器学习可扩展和容易.在高层次上,它提供了如下工具: ML算法:通用学习算法,如分类,回归,聚类和协同过滤 特 ...

  5. 基于spark Mllib(ML)聚类实战

        写在前面的话:由于spark2.0.0之后ML中才包括LDA,GaussianMixture 模型,这里k-means用的是ML模块做测试,LDA,GaussianMixture 则用的是ML ...

  6. Spark Mllib里的Mllib基本数据类型(图文详解)

    不多说,直接上干货! Spark Mllib基本数据类型,根据不同的作用和应用场景,分为四种不同的类型 1.Local  vector : 本地向量集,主要向spark提供一组可进行操作的数据集合 2 ...

  7. 转载:Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现

    Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现 发表于2015-05-07 21:58| 10255次阅读| 来源<程序员>电子刊| 9 条评论| 作者孟祥瑞 大 ...

  8. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  9. Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现

    欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...

随机推荐

  1. 第六十六天 js操作高级

    1.对象使用的高级 对象的key为字符类型,value为任意类型 var obj ={ name:"name", "person-age":18 } // 访问 ...

  2. 自用windows小软件

    好用的软件的定义:没有广告,提升效率,最低的内存占用,体积小 1.解压工具 bandizip:自动解压功能,棒呆了 网址:https://www.bandisoft.com/ 2.pdf阅读编辑工具 ...

  3. edusoho -A5: ApiBundle UML

    edusoho -A5:  ApiBundle UML

  4. [原文 + 补充] 当你在浏览器中输入Google.com并且按下回车之后发生了什么?

    原文:https://github.com/alex/what-happens-when/blob/master/README.rst 一个版本的翻译: https://github.com/skyl ...

  5. RBAC权限管理系统

    RBAC--基于角色的权限管理系统 优势: 1. 简化了用户和权限的关系 2. 易扩展,易于维护 3. RBAC不用给用户单个分配权限,只用指向对应的角色就会有对应的权限,而且分配权限和收回权限都很方 ...

  6. 交互题[CF1103B Game with modulo、CF1019B The hat、CF896B Ithea Plays With Chtholly]

    交互题就是程序与电脑代码的交互. 比如没有主函数的程序,而spj则给你一段主函,就变成了一个整体函数. 还有一种就是程序和spj之间有互动,这个用到fflush(stdout);这个函数就可以实现交互 ...

  7. svn客户端更改用户名

    你是用的小乌龟做客户端吗?在文件夹里点右键,选择TortoiseSVN->Setings->SavedData里面有个authentication data,点击后面的Clear就好了下次 ...

  8. vmware(1):vmware中的bridge、nat、host-only的区别

    VMWare提供了三种工作模式,它们是bridged(桥接模式).NAT(网络地址转换模式)和host-only(主机模式) bridged(桥接模式) 在这种模式下,VMWare虚拟出来的操作系统就 ...

  9. 数据库导出excel,前后端分离

    主要参考了这篇博文:https://www.cnblogs.com/jerehedu/p/4343509.html  2.3和2.4 采用xssf,依赖:compile group: 'org.apa ...

  10. pkuseg:一个多领域中文分词工具包

    pkuseg简单易用,支持细分领域分词,有效提升了分词准确度. 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 相关论文 作者 常见问题及解答 主要亮点 pkuseg具有如下几个特点: ...