简述一下01背包:

背包容量大小固定,有一些物品,每个物品都有重量和价值两个属性,且物品唯一不重复(即同一物品只能放入一个),放入物品的总重量不能超过背包容量 ,求放入背包的物品的总价值最大化。0代表不放入,1代表放入。

可以通过建表的方式实现01背包,非递归实现。

如果用c[i]表示 i 号物品的重量,v[i]表示 i 号物品的价值,函数f(i,j)表示在有0,1,2...i 号物品和重量限制 j 时能够得到的最大价值,表result[i][j]=f(i,j)

那么可以f(i,j)=max((result[i - 1][j - c[i]] + v[i]),(result[i - 1][j]))查表非递归。

考虑如下:

有一个物品,我们需要考虑该不该把他放入背包中,无非放入和不放入两种情况,那么我们只需要把两种情况下的总价值都算出来,然后取较大的一个就可以了。

result[i - 1][j - c[i]] + v[i]:放入的情况

总价值为 有 i-1 个物品且重量上限为当前上限 j 减去 i 号物品的重量时的价值 result[i - 1][j - c[i]] 加上 i 号物品的价值 v[i]

result[i - 1][j]:不放入的情况,总价值和 i-1 个物品时一样(当前考虑的物品是 i 号物品)

代码部分:

#include<iostream>
#include<string>
using namespace std;
int c[]; //重量
int v[]; //价值
int result[][]; //表 ///f()函数,计算在i+1个物品和重量上限j的条件下的最大背包价值 int f(int i,int j) //第i个物品,重量上限j //0号物品即第一个物品
{
if (i == &&c[i]<=j) //0号物品且重量小于上限
{
return v[i]; //把0号物品放入背包,背包价值为第0号物品的价值
}
if (i == && c[i] > j) //0号物品且重量大于上限
{
return ; //物品放不进背包,此时背包为空,背包价值为0
} //不是0号物品的情况
if (i != && j-c[i] >= ) //i号物品可以放入背包
{
//判断放入和不放入两种情况下背包的价值,选择价值大的方案
return (result[i - ][j - c[i]] + v[i]) > result[i - ][j] ? (result[i - ][j - c[i]] + v[i]) : result[i - ][j];
} //把这个物品放入背包 //不放入背包
else //i号物品不可以放入背包
return result[i - ][j];
} int getResult(int top, int num)
{
if (num == ) //有0个物品
return ; else
{ for (int i = ; i < num; i++) //第i个物品
{
for (int j = ; j <= top; j++) //重量
{
result[i][j] = f(i,j); //建表,result[i][j]表示有0,1,2...i个物品和j的重量限制下的最大背包价值
}
}
return result[num-][top];
}
} int main()
{
int top; //背包容量
int num; //物品数量
cout << "输入格式:上限,数量,每个物品的重量和价值。" << endl;
cin >> top;
cin >> num;
for (int i = ; i < num; i++) //第i个物品的重量和价值
{
cin >> c[i] >> v[i];
}
cout << getResult(top, num) << endl;
return ;
}

测试样例1:

测试样例2:

测试样例3:

C++ 实现01背包动态规划的更多相关文章

  1. HihoCoder - 1038 01背包 动态规划

    #1038 : 01背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励 ...

  2. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

  3. [C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包

    一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子 ...

  4. 动态规划——背包问题python实现(01背包、完全背包、多重背包)

    目录 01背包问题 完全背包问题 多重背包问题 参考: 背包九讲--哔哩哔哩 背包九讲 01背包问题 01背包问题 描述: 有N件物品和一个容量为V的背包. 第i件物品的体积是vi,价值是wi. 求解 ...

  5. 动态规划_01背包_从Dijikstra和Floyd入手,彻底理解01背包

    dp一直是短板,现在从最基础的地方开始补 给定背包总容量 M ,n个商品选择,分别有价值vi,占量wi,从中取商品放入背包,令.容量和W=Σwi不超过M,令背包中的价值和V=Σvi最大 然后取法有很多 ...

  6. 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

    一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...

  7. 【洛谷】【动态规划/01背包】P2925 [USACO08DEC]干草出售Hay For Sale

    [题目描述:] 约翰遭受了重大的损失:蟑螂吃掉了他所有的干草,留下一群饥饿的牛.他乘着容量为C(1≤C≤50000)个单位的马车,去顿因家买一些干草. 顿因有H(1≤H≤5000)包干草,每一包都有它 ...

  8. 【洛谷】【动态规划/01背包】P1734 最大约数和

    [题目描述:] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. [输入格式:] 输入一个正整数S. [输出格式:] 输出最大的约数之和. [算法分析:] 01背包,每个数 ...

  9. P1060 开心的金明(洛谷,动态规划递推,01背包轻微变形题)

    题目链接:P1060 开心的金明 基本思路: 基本上和01背包原题一样,不同点在于这里要的是最大重要度*价格总和,我们之前原题是 f[j]=max(f[j],f[j-v[i]]+p[i]); 那么这里 ...

随机推荐

  1. Windows Phone SDK 8.0 安装系统要求

    Windows Phone SDK 8.0 是一个功能齐全的开发环境,可用于构建 Windows Phone 8.0 和 Windows Phone 7.5 的应用和游戏. Windows Phone ...

  2. ASPNETMVC多语言方案

    ASPNETMVC多语言方案 前言: 好多年没写文章了,工作很忙,天天加班, 每天都相信不用多久,就会升职加薪,当上总经理,出任CEO,迎娶白富美,走上人生巅峰,想想还有点小激动~~~~ 直到后来发生 ...

  3. JavaScript---网络编程(2)-函数与数组

    上节,学完循环了~ 现在学Javascript的函数和数组. JavaScript语法 每一种语言都有自己的语法规则,JS语法与Java很像,所以学习起来比较容易.JS中也一样有变量,语句,函数,数组 ...

  4. Lambda表达式与匿名方法

    在C#2中,由于有了方法组,匿名方法,类型的协变和抗变,使得运用delegate变得很容易,在注册事件时代码变得简单易读,但是在C# 2中,代码仍然有点臃肿,大块的匿名方法会降低代码的可读性,一般我们 ...

  5. Hdu 5213-Lucky 莫队,容斥原理,分块

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5213 Lucky Time Limit: 6000/3000 MS (Java/Others)    Me ...

  6. BOM、DOM学习笔记——JavaScript

    1.BOM的概述    browser object modal :浏览器对象模型.    浏览器对象:window对象.    Window 对象会在 <body> 或 <fram ...

  7. win10清理C盘

    用win10系统也不是很久,发现C盘容量越来越小了,于是乎扫描了一下,发现有两个文件容量很大 C:/hiberfil.syssize:1660444672 C:/swapfile.syssize:26 ...

  8. (转)解决png图片在IE6下不透明的方法

    来源于:http://xzl52199.blog.163.com/blog/static/95206446201142174540220/ 一.传统的JavaScript方法 思路: 1.一个专门解决 ...

  9. SQL基础之 时间戳

    本文转载:http://www.cnblogs.com/liuhh/archive/2011/05/14/2046544.html 一直对时间戳这个概念比较模糊,相信有很多朋友也都会误认为:时间戳是一 ...

  10. oppo X907刷机包 COLOROS 1.0 正式版公布 安卓4.2.2

    ROM介绍 本版本号将是X907史上最好的一版本号 全新COLOROS的UI 更新全局手势板操作 优化高速启动应用 安全保障中心也是一直採用COLOROS组成的 COLOROS 1.0给用户带来在线音 ...