题意:给你正整数n和k,然后计算从i到n k%i的和;

思路;如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数列,然后你把这些等差数列加上就是答案。

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std; ll n,k;
ll Getsum(ll n)
{
ll sum=;
for(ll i=; i<=n; i++)
{
sum+=k%i;
}
return sum;
} int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
if(n<=)
{
printf("%lld\n",Getsum(n));
continue;
}
ll ans=;
ans+=max((ll),n-k)*k;
for(int i=; i<=; i++)
{
if(i>k) break;
ll x1=k/(i-)-k/i;
if(k/i>n)continue;
int s=k%(k/(i-)),e=k%(k/i+);
if(k/(i-)>n)
{ s=k%n;
x1=n-k/i;
}
ans+=(s+e)*x1/;
}
if(k>)
{
ll m=k/;
ans+=Getsum(m);
}
printf("%lld\n",ans);
}
return ;
}

LA 3521 Joseph's Problem的更多相关文章

  1. UVALive - 3521 Joseph's Problem (整除分块)

    给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...

  2. UVa 1363 (数论 数列求和) Joseph's Problem

    题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...

  3. UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。

    /** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...

  4. Joseph's Problem UVALive - 3521(等差数列的应用)

    题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...

  5. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  6. HDU - 3521 An easy Problem(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=3521 题意 对于矩阵A,求e^A的值. 分析 这个定眼一看好像很熟悉,就是泰勒展开,可惜自己的高数已经还给老师了 ...

  7. UVa 1363 - Joseph's Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA 1363 Joseph's Problem

    https://vjudge.net/problem/UVA-1363 n 题意:求 Σ  k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...

  9. UVA1363 - Joseph's Problem(数学,迷之优化)

    题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...

随机推荐

  1. SQLite的 SQL语法总结

    SQLite库可以解析大部分标准SQL语言.但它也省去了一些特性并且加入了一些自己的新特性.这篇文档就是试图描述那些SQLite支持/不支持的SQL语法的.查看关键字列表. 如下语法表格中,纯文本用蓝 ...

  2. 通过MultipleOutputs写到多个文件

    MultipleOutputs 类可以将数据写到多个文件,这些文件的名称源于输出的键和值或者任意字符串.这允许每个 reducer(或者只有 map 作业的 mapper)创建多个文件. 采用name ...

  3. linux上传下载软件

    如何实现windows和linux之间的文件传输 (原文地址:http://hi.baidu.com/ying5420/item/439dee93f0f7fd1a934f41e2) 如果想从windo ...

  4. 10.6 noip模拟试题

    更正:第三组:不存在相同的字符|str|=26,26<=n<=100 60 /* 呵呵哒~这题 正解还在研究.... 因为没有题解只有个std还在看 不过乱搞一下可以70(数据好像有问题只 ...

  5. Apache本地环境下出现循环重定向

    最近发现一个很奇怪的问题,用了很久的apache+php访问项目,昨天突然不行了,出现了这个 然后我一点点测试,我用的是TP框架,Indexaciton的index中调用框架里的一个redirect函 ...

  6. 脚本动态监控input

    Jquery $('input').bind('input propertychange', function() { //进行相关操作 }); JS if(isIE) { document.getE ...

  7. System.Data.DbType的字符串和数据库中字符串类型对应关系

    前两天项目中因为历史原因数据库中的一个字段是varchar类型,在做SQL参数化处理时候默认都是DbType.String, 免得查询出现数据转换,于是做类型一致,搜了下对应关系还没找到,只好自己打开 ...

  8. 通常我们使用[NSDate date]方法得到的时间与当前时间不一致,如何解决?

    NSDate *date = [NSDate date];    NSTimeZone *zone = [NSTimeZone systemTimeZone];    NSInteger interv ...

  9. ubuntu系统安装的MySql数据库,远程不能访问的几种可能问题

    安装MySQL数据库后一般会遇到远程计算机不能连接的问题,具体问题需要我们排查.可能一:MySql数据库是否提供了外部访问的用户以及权限?可能二:MySql的配置文件是否只绑定了本机ip(ubuntu ...

  10. SGU 132.Another Chocolate Maniac

    时间限制:0.25s 空间限制:4M 题目: Bob非常喜欢巧克力,吃再多也觉得不够.当他的父母告诉他将要买很多矩形巧克力片为他庆祝生日时,他的喜悦是能被理解的.巧克力都是 2x1 或 1x2 的矩形 ...