图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph
Description
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.
Find out what minimal sum Bob needs to remove all arcs from the graph.
Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.
Output
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.
Sample Input
3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3
Sample Output
5
3
1 +
2 -
2 +
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
const int maxm=;
const int INF=;
int cnt,tot,fir[maxn],fron[maxn],dis[maxn];
int to[maxm],nxt[maxm],gap[maxn],path[maxn];
int cap[maxm];queue<int>q; struct Max_Flow{
void Init(int tot_=){
tot=tot_;cnt=;
memset(fir,,sizeof(fir));
memset(dis,,sizeof(dis));
memset(gap,,sizeof(gap));
} void add(int a,int b,int c){
nxt[++cnt]=fir[a];
fir[a]=cnt;
cap[cnt]=c;
to[cnt]=b;
} void addedge(int a,int b,int c){
add(a,b,c);
add(b,a,);
} bool BFS(int s,int t){
dis[t]=;q.push(t);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=fir[x];i;i=nxt[i])
if(!dis[to[i]]){
dis[to[i]]=dis[x]+;
q.push(to[i]);
}
}
return dis[s];
} int Aug(int s,int t,int &p){
int f=INF;
while(p!=s){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}p=t;
while(p!=s){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
return f;
} int ISAP(int s,int t){
if(!BFS(s,t))return ;
for(int i=s;i<=t;i++)fron[i]=fir[i];
for(int i=s;i<=t;i++)gap[dis[i]]+=;
int p=s,ret=;
while(dis[s]<=tot){
if(p==t)ret+=Aug(s,t,p); for(int &i=fron[p];i;i=nxt[i])
if(cap[i]&&dis[p]==dis[to[i]]+){
path[p=to[i]]=i;
break;
} if(!fron[p]){
if(--gap[dis[p]]==)
break;
int Min=tot;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])Min=min(Min,dis[to[i]]);
gap[dis[p]=Min+]+=;fron[p]=fir[p];
if(p!=s)p=to[path[p]^];
}
}
return ret;
}
}isap; int n,m,top;
int tag[maxn],st[maxn];
void DFS(int x){
tag[x]=;
for(int i=fir[x];i;i=nxt[i])
if(cap[i]&&!tag[to[i]])DFS(to[i]);
} int main(){
scanf("%d%d",&n,&m);
int s=,t=*n+;
isap.Init(t+);
for(int i=,v;i<=n;i++){
scanf("%d",&v);
isap.addedge(s,i,v);
}
for(int i=,v;i<=n;i++){
scanf("%d",&v);
isap.addedge(i+n,t,v);
}
for(int i=,a,b;i<=m;i++){
scanf("%d%d",&a,&b);
isap.addedge(b,a+n,INF);
} printf("%d\n",isap.ISAP(s,t));
DFS();
for(int i=;i<=n;i++){
if(!tag[i])
st[++top]=i;
if(tag[i+n])
st[++top]=i+n;
}
printf("%d\n",top);
for(int i=;i<=top;i++){
if(st[i]<=n)
printf("%d +\n",st[i]);
else
printf("%d -\n",st[i]-n);
}
return ;
}
图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph的更多相关文章
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- POJ2125 Destroying The Graph(二分图最小点权覆盖集)
最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...
- poj 3308 Paratroopers(二分图最小点权覆盖)
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8954 Accepted: 2702 Desc ...
- POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割
思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...
- poj 2125 Destroying The Graph (最小点权覆盖)
Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS Memory Limit: 65536K ...
- POJ - 2125 Destroying The Graph (最小点权覆盖)
题意:给一张图,现在要删去所有的边,删去一个点的所有入边和所有出边都有其对应\(W_{i+}\)和\(W_{i-}\).求删去该图的最小花费,并输出解 分析:简而言之就是用最小权值的点集去覆盖所有的边 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- POJ 2125 Destroying The Graph [最小割 打印方案]
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8311 Accepted: 2 ...
随机推荐
- React组件的生命周期各环节运作流程
'use strict'; React.createClass({ //1.创建阶段 getDefaultProps:function(){ //在创建类的时候被调用 console.log('get ...
- Index Full Scan vs Index Fast Full Scan-1103
[Oracle] Index Full Scan vs Index Fast Full Scan作者:汪海 (Wanghai) 日期:14-Aug-2005 出处:http://spaces.msn. ...
- oracle 报错 :ORA-04052、 ORA-00604、 ORA-03106、 ORA-02063
最近发现一个很奇怪的问题: 创建了一个DB_LINK连接另一个Oracle数据库. select * from tablename@dblinkname; 单句执行没问题,但是把这句SQL写到存储过程 ...
- 微信小程序开发之入门篇(熟悉开发工具)
个人的每一篇博文都谈不上有什么技术含量,只是为了帮助不熟悉微信小程序开发的自己及他人提供一下思路.谢谢,下面开始! PS: 因为本人没有小程序的内测资格,所以所有的开发及Demo都是无AppId的,如 ...
- 分享一个nodejs写的小论坛
引言:作为一个前端小菜鸟,最近迷上了node,于是乎空闲时间,为了练练手写了一个node的小社区,关于微信小程序的,欢迎大家批评指导. 项目架构部分 一.前端架构 作为一个写样式也得无聊的前端狮,我偷 ...
- Python:函数定义
#!/usr/bin/python3 #函数 def add(a,b): return a+b print("add(2,5) = ",add(2,5)) def add2(a,b ...
- mysql数据库容量查询
1.统计每张表的数据量SELECT *FROM ( select TABLE_NAME, concat( round( sum(DATA_LENGTH / 1024 / 1024 ), 7 ) ) a ...
- phpcms v9后台美化需要修改的部分整理
PHPcms后台登陆后的页面修改 Phpcms->modules->admin->templates->main.tpl.php 1,安全提示部分 <h6>< ...
- Android扫描二维码 实现 登录网页
工程代码:ScanQRcode.zip ------------------------------------------------------------------ 1. 扫描二维码登录的实现 ...
- Javascript跳转手机站代码
$(document).ready(function(){ var mobileAgent = new Array("iphone", "ipod", &quo ...