《how to design programs》14章 再论自引用数据
这是一个家族谱:
;child
(define-struct child (father mother name date eyes))
#lang racket ;child
(define-struct child (father mother name date eyes)) ;; Oldest Generation:
(define Carl (make-child empty empty 'Carl 1926 'green))
(define Bettina (make-child empty empty 'Bettina 1926 'green)) ;; Middle Generation:
(define Adam (make-child Carl Bettina 'Adam 1950 'yellow))
(define Dave (make-child Carl Bettina 'Dave 1955 'black))
(define Eva (make-child Carl Bettina 'Eva 1965 'blue))
(define Fred (make-child empty empty 'Fred 1966 'pink)) ;; Youngest Generation:
(define Gustav (make-child Fred Eva 'Gustav 1988 'brown)) ;判断a-ftree是否包含一个child结构体,其eyes为blue
(define (blue-eyed-ancestor? a-ftree)
(cond
[(empty? a-ftree) false]
[else (cond
[(symbol=? (child-eyes a-ftree) 'blue) true]
[(blue-eyed-ancestor? (child-father a-ftree) ) true]
[(blue-eyed-ancestor? (child-mother a-ftree)) true]
[else false]
)
]))
(blue-eyed-ancestor? Gustav)
;求家谱树种人数
(define (count-persons a-ftree)
(cond
[(empty? a-ftree) ]
[else
(+
(+ (count-persons (child-father a-ftree)) (count-persons (child-mother a-ftree)))
)]))
(count-persons Carl)
(count-persons Adam)
x题目:
读入一个家谱树节点和当前年份,返回所有人的平均年龄:
(define (sum-of-ages a-ftree current-year)
(cond
[(empty? a-ftree) ]
[else (+ (- current-year (child-date a-ftree) )
(+
(sum-of-ages (child-father a-ftree) current-year)
(sum-of-ages (child-mother a-ftree) current-year)
)
)]) ) (define (average-age a-ftree current-year)
(/ (sum-of-ages a-ftree current-year)
(count-persons a-ftree)))
题目:
Exercise 14.1.5. Develop the function eye-colors
, which consumes a family tree node and produces a list of all eye colors in the tree. An eye color may occur more than once in the list.
Hint: Use the Scheme operation append
, which consumes two lists and produces the concatenation of the two lists. For example:
(append (list 'a 'b 'c) (list 'd 'e))
= (list 'a 'b 'c 'd 'e)
We discuss the development of functions like append
in section 17. Solution
(define (eye-colors a-ftree)
(cond
[(empty? a-ftree) empty]
[else
(cons
(child-eyes a-ftree)
(append (eye-colors (child-father a-ftree))
(eye-colors (child-mother a-ftree))
))]
))
二叉树:
binary tree Bt是这样2者之一:
1.false
2.(make-node soc pn lft rgt) 其中soc是数,pn是符号,lft和rgt是BT。
这里选用false来表示缺乏信息,这一点是任意的,事实上,恩也可以选用empty,不过,我们更熟悉false,而且比起其他东西,他更好用。
函数bt-contains? 读入一个数和一颗树,判断这个数是否在树中出现:
14.1. | Problem Statement | Table of Contents | 14.2.
;; Language: Beginning Student ; 'Bobby
; \
; \
; 'Luke ; 'Bobby
; /
; /
; 'Luke ; 'Bobby
; / \
; / \
; 'Luke 5 'Paul #|
A BT is either
. false; or
. (make-node soc pn lft rgt)
where soc is a number, pn is a symbol, and lft and rgt are BTs.
|#
(define-struct node (ssn name left right)) (define bt1 (make-node 'Bobby false (make-node 12 'Luke false false)))
(define bt2 (make-node 'Bobby (make-node 12 'Luke false false) false))
(define bt3 (make-node 'Bobby (make-node 12 'Luke false false) (make-node 'Paul false false))) ;; bt-contains?: number BT -> boolean
;; consumes a number and binary-tree and determines if a-bt contains n
(define (bt-contains? n a-bt)
(cond
[(boolean? a-bt) false]
[else
(or (= n (node-ssn a-bt))
(bt-contains? n (node-left a-bt))
(bt-contains? n (node-right a-bt)))])) (equal? (bt-contains? bt1) true)
(equal? (bt-contains? bt3) true)
(equal? (bt-contains? bt3) false)
(equal? (bt-contains? bt2) true)
(equal? (bt-contains? bt2) false)
(equal? (bt-contains? bt3) true)
开发函数search-bt,读入一个数n和BT,如果这棵树包含一个node结构体,其soc字段为n,函数就返回这个节点的pn字段的值,否则,函数返回false:
;; search-bt : number binary-tree -> false or
;; returns true if a-n is in a-bt, and false if not.
(define (search-bt a-n a-bt)
(cond
[(boolean? a-bt) #f]
[else
(cond
[(= (node-ssn a-bt) a-n)
(node-name a-bt)]
[(boolean? (search-bt a-n (node-left a-bt)))
(search-bt a-n (node-right a-bt))]
[else
(search-bt a-n (node-left a-bt))])]))
这里我们用boolean?检查search-bt是否成功作用于某一科子树。(回溯思想)。
二叉搜索树:BST
A binary-search-tree (short: BST) is a
BT
:
false
is always aBST
;
(make-node soc pn lft rgt)
is aBST
if
lft
andrgt
areBST
s,all
ssn
numbers inlft
are smaller thansoc
, andall
ssn
numbers inrgt
are larger thansoc
.
The second and third conditions are different from what we have seen in previous data definitions. They place an additional and unusual burden on the construction BST
s. We must inspect all numbers in these trees and ensure that they are smaller (or larger) than soc
.
二叉树中序变量:
;; DEFINITION:
(define (inorder abt)
(cond
((boolean? abt) empty)
((node? abt)
(append (inorder (node-left abt))
(cons (node-name abt)
(inorder (node-right abt)))))))
二叉搜索树搜索:
;; search-bst : number binary-tree -> false or
;; returns true if a-n is in a-bt, and false if not.
(define (search-bt a-n a-bt)
(cond
[(boolean? a-bt) #f]
[else
(cond
[(= (node-ssn a-bt) a-n)
(node-name a-bt)]
[(< (node-ssn a-bt) a-n)
(search-bt a-n (node-right a-bt))]
[(> (node-ssn a-bt) a-n)
(search-bt a-n (node-left a-bt))])]))
插入;
14.2. | Problem Statement | Table of Contents | 14.2.
; DATA DEFINITIONS
(define-struct node (ssn name left right))
; A binary tree is either
; . false or
; . (make-node soc pn lft rgt)
; where soc is a number, pn is a symbol, and lft and rgt are binary
; trees. ;; EXAMPLES
; (create-bst false 'b) => (make-node 6 'b false false)
;
; (create-bst (make-node 'a false false) 5 'a)
; =>
; (make-bst 'a false (make-bst 5 'a false false))
;
; (create-bst (make-node 'a false false) 3 'g)
; =>
; (make-node 'a (make-node 3 'g false false) false)
;
; (create-bst (make-node 'a (make-node 2 'a false false) false) 'g)
; =>
; (make-node 'a (make-node 2 'a false (make-node 'g))) ;; TEMPLATE:
;(define (bst-fun abt)
; (cond
; ((boolean? abt) ...)
; ((node? abt)
; ... (node-ssn abt) ... (node-name abt) ...
; ... (bst-fun (node-left abt)) ... (bst-fun (node-right abt)) ... ))) ;; CONTRACT/HEADER/PURPOSE:
;; create-bst : binary-tree number symbol -> binary-tree
;; to create a binary search tree with the same values as the input tree
;; and also the given number associated with the given name
(define (create-bst bst n s)
(cond
[(eq? bst false) (make-node n s false false)]
[else
(cond
[(< n (node-ssn bst))
(make-node (node-ssn bst)
(node-name bst)
(create-bst (node-left bst) n s)
(node-right bst))]
[(> n (node-ssn bst))
(make-node (node-ssn bst)
(node-name bst)
(node-left bst)
(create-bst (node-right bst) n s))]
[else (error 'create-bst "Number already in BST")])])) (equal? (create-bst false 'b) (make-node 6 'b false false))
(equal? (create-bst (make-node 'a false false) 5 'a)
(make-node 'a false (make-node 5 'a false false)))
(equal? (create-bst (make-node 'a false false) 3 'g)
(make-node 'a (make-node 3 'g false false) false))
(equal? (create-bst (make-node 'a (make-node 2 'a false false) false) 'g)
(make-node 'a (make-node 2 'a false (make-node 'g false false)) false))
感觉这个程序有点奇怪, 但仔细相同时合理的。没有多余的创建node。
开发函数,读入一个由数和名字组成的表,反复调用create-bst,返回一个bst。
; create-bst-from-list : list-of-numbers-and-symbols -> binary-tree
; to produce a binary tree with all the numbers in the input list
; associated with their corresponding symbols
(define (create-bst-from-list lons)
(cond·
[(empty? lons) false]
[else
(create-bst
(create-bst-from-list (rest lons))
(first (first lons))
(second (first lons)))]))
(equal?
(create-bst-from-list '((1 a) (18 b) (2 g)))
(make-node 2 'g (make-node 1 'a false false) (make-node 18 'b false false)))
为true。 表中的表:
A Web-page (short: WP) is either
empty
;(cons s wp)
wheres
is a symbol andwp
is a Web page; or(cons ewp wp)
where bothewp
andwp
are Web pages.
This data definition differs from that of a list of symbols in that it has three clauses instead of two and that it has three self-references instead of one. Of these self-references, the one at the beginning of a cons
tructed list is the most unusual. We refer to such Web pages as immediately embedded Web pages.
开发函数size,读入一个网页,返回其自身以及所有嵌入网页所包含的单词数。
Let's develop the function size
, which consumes a Web page and produces the number of words that it and all of its embedded pages contain:
;;size : WP -> number
;; to count the number of symbols that occur ina-wp
(define (size a-wp) ...)
The two Web pages above suggest two good examples, but they are too complex. Here are three examples, one per subclass of data:
(= (size empty)
0)
(= (size (cons 'One empty))
1)
(= (size (cons (cons 'One empty) empty))
1)
开开发size函数,我们可以按照设计诀窍,数据定义说明我们需要3个cond子句,一个子句处理empty页,一个子句处理由符号开始的页,另一个子句处理由嵌入的网页开始的页。虽然第一个测试empty的条件我们已经很熟悉了,但是第2个和第3个条件需要我们进一步检查,因为在数据定于中,这2个子句都使用了cons,所以简单地使用cons?并不能区分这2种数据形式。 如果网页不是empty,那么他必然是cons结构,后两种数据形式之间的特征是表中的第一个元素,换句话说,第二个条件必须使用一个测试a-wp的第一个元素的谓词:
;求网页单词数
(define (size a-wp)
(cond
[(empty? a-wp) ]
[(symbol? (first a-wp)) (+ (size (rest a-wp)))]
[else (+ (size (first a-wp)) (size (rest a-wp)))]
)
)
(size '(a b c))
注意使用
(size '(1 2 3)) 报错:
first: contract violation
expected: (and/c list? (not/c empty?))
given: 1
为什么会报错?
(first (cons 1 2))
. . first: contract violation
expected: (and/c list? (not/c empty?))
given: '(1 . 2)
(first (list 1 2)
正确输出1.
(first lst) The same as (car lst), but only for lists (that are not empty).
求网页深度:
只包含符号的深度为0,包含某个直接嵌入页的深度加1.
;; Language: Intermediate Student ;; depth: web-page -> number
;; computes the depth of embedded web-pages
(define (depth a-wp)
(cond
[(empty? a-wp) ]
[(symbol? (first a-wp))
(depth (rest a-wp))]
[else #cons wp wp
(max (+ (depth (first a-wp)) )
(depth (rest a-wp)))])) ;;; tests
(check-expect (depth '()) 0)
(check-expect (depth '(a)) 0)
(check-expect (depth '(())) 1)
(check-expect (depth '(a b c)) 0)
(check-expect (depth '(a (b (c (d))) e (f (g)) h))
)
对这个有点不解:
(max (+ (depth (first a-wp)) 1)
(depth (rest a-wp)))])) 这么理解,list的后面一定为empty。
如果是(list 'a 'b);
运行2次symbol,结果为0.
如果是'( a (b c))
结果为1。
(list '( (a) ((b)) )
(+ (depth (a) 1) or (depth ((b)) )
第1个为1,第2个为2.
所以深度为2. 开发函数occurs1,读入一个网页和一个开始符号,返回该符号在网页出现的次数,忽略嵌入的网页:
;; occurs1 : WP symbol -> number
;; produces number of times given symbol occurs
;; in the Web page, ignoring nested WPs
(define (occurs1 a-wp s)
(cond
[ (empty? a-wp) ]
[ (and (symbol? (first a-wp))
(symbol=? (first a-wp) s))
(+ (occurs1 (rest a-wp) s))]
[ else (occurs1 (rest a-wp) s)]))
;; tests
(= (occurs1 '(The TeachScheme Web Page
Here you can find:
(LectureNotes for Teachers)
(Guidance for (DrScheme: a Scheme programming environment))
(Exercise Sets)
(Solutions for Exercises)
For further information: write to scheme@cs)
'Exercise))
(= (occurs1 '(The TeachScheme Web Page
Here you can find:
(LectureNotes for Teachers)
(Guidance for (DrScheme: a Scheme programming environment))
(Exercise Sets)
(Solutions for Exercises)
For further information: you can write to scheme@cs)
'can))
开发函数occurs2.计算所有出现次数,包括嵌入的网页:
最开始的写法,错误:
(define (occurs2 a-wp s)
(cond
[(empty? a-wp) ]
[(and (symbol? (first a-wp))
(symbol=? (first a-wp) s)
)
(+ (occurs2 (rest a-wp) s))
]
[else
(+ (occurs2 (first a-wp) s)
(occurs2 (rest a-wp) s))
]
)
)
正确代码:
(define (occurs2 a-wp s)
(cond
[ (empty? a-wp) ]
[ (symbol? (first a-wp)) (cond
[ (symbol=? (first a-wp) s)
(+ (occurs2 (rest a-wp) s))]
[ else (occurs2 (rest a-wp) s)])]
[ else (+ (occurs2 (first a-wp) s)
(occurs2 (rest a-wp) s))]))
;; tests
错误的代码错在哪里, 没有处理所有的情况。
开发函数replace,读入符号new和old,以及网页a-wp,返回一个网页,其中所有old出现都被替换为new:
;; replace : symbol symbol WP -> WP
;; replaces all occurences of old with new
(define (replace old new a-wp)
(cond
[ (empty? a-wp) empty]
[ (symbol? (first a-wp))
(cond
[ (symbol=? (first a-wp) old)
(cons new
(replace old new (rest a-wp)))]
[else (cons (first a-wp)
(replace old new (rest a-wp)))])]
[ else (cons (replace old new (first a-wp))
(replace old new (rest a-wp)))]))
Exercise 15.3.4. Develop the program find
. The function consumes a Web page and a symbol. It produces false
, if the symbol does not occur in the body of the page or its embedded Web pages. If the symbol occurs at least once, it produces a list of the headers that are encountered on the way to the symbol.
Hint: Define an auxiliary like find
that produces only true
when a Web page contains the desired word. Use it to define find
. Alternatively, useboolean?
to determine whether a natural recursion of find
produced a list or a boolean. Then compute the result again. We will discuss this second technique, called backtracking, in the intermezzo at the end of this part. Solution
;; Data Definitions (define-struct wp (header body))
;; A Web-page (short: WP) is a structure:
;; (make-wp h p)
;; where h is a symbol and p is a (Web) document. ;; A (Web) document is either:
;; . empty
;; . (cons s p) where s is a symbol and p is a (Web) document
;; . (cons wp p) where wp is a web-page and p is a document ;; A list-of-symbols is either:
;; . empty
;; . (cons symbol list-of-symbols) ;; A los-or-false is either:
;; . false
;; . list-of-symbols ;; find : wp symbol -> los-or-false
(define (find a-wp a-word)
(append-or-false (list (wp-header a-wp))
(find-in-document (wp-body a-wp) a-word))) ;; find-in-body : document symbol -> los-or-false
(define (find-in-document a-page a-word)
(cond
[(empty? a-page) false]
[(symbol? (first a-page)) (cond
[(symbol=? (first a-page) a-word) empty]
[else (find-in-document (rest a-page) a-word)])]
[else (local ((define in-subpage (find (first a-page) a-word)))
(cond
[(boolean? in-subpage) (find-in-document (rest a-page) a-word)]
[else in-subpage]))])) ;; append-or-false : list-of-symbols los-or-false -> los-or-false
;; appends y to x if y is not false
(define (append-or-false x y)
(cond
[(boolean? y) y]
[else (append x y)])) ;; --- test code ;; data examples:
(define empty-page (make-wp 'empty-page empty))
(define page--word (make-wp 'page-1-word (cons 'w1 empty)))
(define page--words (make-wp 'page-2-words (list 'w1 'w2)))
(define with--word-subpage (make-wp 'page-1-word-with-subpage (cons page-1-word empty)))
(define with--words-subpage (make-wp 'with-2-words-subpage (cons page-2-words empty)))
(define dense-page1 (make-wp 'realistic (list 'w3 page--words 'w4 page-1-word 'w5)))
(define dense-page2 (make-wp 'realistic (list 'w3 empty-page 'w4 with-1-word-subpage 'w5))) ;; test cases ; test for 'append-or-false'
(check-expect (append-or-false empty false) false)
(check-expect (append-or-false empty empty) empty)
(check-expect (append-or-false (list 'a) false) false)
(check-expect (append-or-false (list 'a) empty) (list 'a))
(check-expect (append-or-false (list 'a) (list 'b)) (list 'a 'b)) ;; test for 'find'
(check-expect (find empty-page 'w1) false)
(check-expect (find page--word 'w1) (list 'page--word))
(check-expect (find page--words 'w3) false)
(check-expect (find with--words-subpage 'w2) (list 'with--words-subpage 'page-2-words))
(check-expect (find dense-page1 'no-in-there) false)
(check-expect (find dense-page1 'w1) (list 'realistic 'page-2-words))
(check-expect (find dense-page1 'w2) (list 'realistic 'page-2-words))
(check-expect (find dense-page2 'w1) (list 'realistic 'page-1-word-with-subpage 'page--word))
(check-expect (find dense-page1 'w5) (list 'realistic)) (generate-report)
;; --- end test code
scheme求值:
(define-struct add (left right))
(define-struct mul(left right))
开发函数,读入一个scheme,判断他是不是数值的,(也就是不包含变量)。
;; numeric? : s-exp -> boolean
;; determines if a representation of a scheme expression
;; is numeric
(define (numeric? a-sexp)
(cond
[ (number? a-sexp) true]
[ (symbol? a-sexp) false]
[ (add? a-sexp) (and (numeric? (add-left a-sexp))
(numeric? (add-right a-sexp)))]
[ (mul? a-sexp) (and (numeric? (mul-left a-sexp))
(numeric? (mul-right a-sexp)))]))
;; tests:
(boolean=? (numeric? (make-add (make-mul 'x) 4)) false)
(boolean=? (numeric? (make-add (make-mul ) )) true)
计算表达式,(遇到变量,返回一个错误)
;; evaluate-expression : s-exp -> number
;; computes value of a scheme expression
(define (evaluate-expression a-sexp)
(cond
[ (number? a-sexp) a-sexp]
[ (symbol? a-sexp) (error 'evaluate-expression "undefined variable")]
[ (add? a-sexp) (+ (evaluate-expression (add-left a-sexp))
(evaluate-expression (add-right a-sexp)))]
[ (mul? a-sexp) (* (evaluate-expression (mul-left a-sexp))
(evaluate-expression (mul-right a-sexp)))]))
;; tests
(= (evaluate-expression (make-add (make-mul ) )) )
(evaluate-expression (make-add (make-mul 'x) 4)) ;; should throw error
计算表达式,开发一个函数subst,读入变量(的表示法V,数N以及一个scheme表达式(的表示法),他返回一个结构相等的表达式,把其中所有的V都替换为N。
;; subst : symbol number s-exp -> number
;; computes value of a scheme expression
(define (subst v n a-sexp)
(cond
[ (number? a-sexp) a-sexp]
[ (symbol? a-sexp) (cond
[ (symbol=? a-sexp v) n]
[ else (error 'subst
"undefined variable")])]
[ (add? a-sexp) (+ (subst v n (add-left a-sexp))
(subst v n (add-right a-sexp)))]
[ (mul? a-sexp) (* (subst v n (mul-left a-sexp))
(subst v n (mul-right a-sexp)))]))
;; test
(= (subst 'x 4 (make-add (make-mul 2 'x) )))
(= (subst 'y 4 (make-add (make-mul 2 'x) ))) ;; should throw error
比上面的多了个判断symbol是否等于给定的,如果等于就返回新的n。
《how to design programs》14章 再论自引用数据的更多相关文章
- 【机器学习实战】第14章 利用SVD简化数据
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生 ...
- MySQL性能调优与架构设计——第 14 章 可扩展性设计之数据切分
第 14 章 可扩展性设计之数据切分 前言 通过 MySQL Replication 功能所实现的扩展总是会受到数据库大小的限制,一旦数据库过于庞大,尤其是当写入过于频繁,很难由一台主机支撑的时候,我 ...
- 《机器学习实战》学习笔记——第14章 利用SVD简化数据
一. SVD 1. 基本概念: (1)定义:提取信息的方法:奇异值分解Singular Value Decomposition(SVD) (2)优点:简化数据, 去除噪声,提高算法的结果 (3)缺点: ...
- 第 14 章 结构和其他数据形式(enum枚举)
/*----------------------------- enum.c -- 使用枚举类型的值 -----------------------------*/ #include <stdi ...
- 第 14 章 结构和其他数据形式(伸缩型数组成员C99)
伸缩型数组成员C99 声明一个伸缩型数组成员的规则: 1.伸缩型数组成员必须是结构的最后一个成员: 2.结构中必须至少有一个成员: 3.伸缩数组的方括号是空的. 示例 struct flex { in ...
- 第 14 章 结构和其他数据形式(names3)
/*----------------------------------- names3.c -- 使用指针和 malloc() ----------------------------------- ...
- 第 14 章 结构和其他数据形式(names)
*--------------------------------- names1.c -- 使用指向结构的指针 ---------------------------------*/ #includ ...
- 《how to design programs》12章函数复合
我们写代码时要学会适应辅助函数.作者提出了一个问题,如何对一个表排序.排序函数读取一个表,产生另一个表.排序函数的合约和用途如下: (sort empty) ;; expected value: em ...
- ASM:《X86汇编语言-从实模式到保护模式》第14章:保护模式下的特权保护和任务概述
★PART1:32位保护模式下任务的隔离和特权级保护 这一章是全书的重点之一,这一张必须要理解特权级(包括CPL,RPL和DPL的含义)是什么,调用门的使用,还有LDT和TSS的工作原理(15章着重 ...
随机推荐
- Android为ListView的Item设置不同的布局
MainActivity如下: package cc.testlistview; import java.util.ArrayList; import java.util.HashMap; impor ...
- iOS 开发-单元测试
前言 维基百科对单元测试的定义如下: 在计算机编程中,单元测试(英语:Unit Testing)又称为模块测试, 是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作.程序单元是应用的最小可 ...
- 使用downloadmanager调用系统的下载
/** * 文件名 UpdateDownload.java * 包含类名列表 com.issmobile.numlibrary.tool * 版本信息 版本号 * 创建日期 2014年7月14日 ...
- 转:SVN使用教程总结
转自:http://www.cnblogs.com/tugenhua0707/p/3969558.html SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不同的版 ...
- Android开发技巧——去掉TextView中autolink的下划线
我们知道,在布局文件中设置textview的autolink及其类型,这时textivew上会显示link的颜色,并且文字下面会有一条下划线,表示可以点击.而在我们在点击textview时,应用将根据 ...
- 【开源java游戏框架libgdx专题】-03-项目开发与调试
创建libgdx项目 下载项目配置工具 gdx-setup.jar 生成项目 导入Eclipse File -> Import -> Gradle -> Gradle Project ...
- Sublime Text插件之Emmet
转载:http://www.w3cplus.com/tools/using-emmet-speed-front-end-web-development.html Emmet插件以前被称作为Zen Co ...
- 关于php读mysql数据库时出现乱码的解决方法
关于php读mysql数据库时出现乱码的解决方法 php读mysql时,有以下几个地方涉及到了字符集. 1.建立数据库表时指定数据库表的字符集.例如 create table tablename ( ...
- css样式float造成的浮动“塌陷”问题的解决办法
什么是CSS Float? 定义: float 属性定义元素浮动到左侧或右侧.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级元素,而不论 ...
- leetcode修炼之路——83. Remove Duplicates from Sorted List
哈哈,我又来了.昨天发现题目太简单就没有放上来,今天来了一道有序链表的题.题目如下: Given a sorted linked list, delete all duplicates such th ...