LD1-B(最短路径-SPFA)
/*
*题目大意:
*给定v个点的重量,并给定e条边,每条边具有一个权值;
*在e条边中选v-1条边使这v个点成为一棵树;
*定义这棵树的代价为(每棵子树节点重量和其子树根到父节点的边的权值的乘积)之和;
*求以1为根节点的树的最小代价;
*
*算法思想:
*每个点的价值为该点到达根结点所需经过的边权之和乘以该结点重量;
*即要让到达每个结点经过的边的单位价格之和最小;
*即可转化为最短路问题;
*做的时候WA了很多次,需要考虑各种细节问题;
*精度问题,用long long;
*没答案时输出“No Answer”,当n为0或1是输出为0;
*最大值INF取值过小或者过大,过小可能小于里面的权值,过大相加时有可能会溢出,妈的;
**/
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<cstdio>
#include<climits>
#include<algorithm>
using namespace std; typedef long long LL; const long long INF=0xffffffffff;
const int N=50010;
const int M=100010; struct node
{
int to;
int w;
int next;
}; node edge[M];
int head[M];
int idx;
LL dist[N];
int value[N];
int n,m; void Addedge(int u,int v,int w)
{
edge[idx].w=w;
edge[idx].to=v;
edge[idx].next=head[u];
head[u]=idx++;
} LL SPFA(int s)
{
queue<int>Q1;
int inq[N];
for(int i=0; i<=n; i++)
{
dist[i]=INF;
inq[i]=0;
}
dist[s]=0;
Q1.push(s);
inq[s]++;
while(!Q1.empty())
{
int q=Q1.front();
Q1.pop();
inq[q]--;
if(inq[q]>n)//负权环
return -1;
int k=head[q];
while(k>=0)
{
if(dist[edge[k].to]>dist[q]+edge[k].w)
{
dist[edge[k].to]=edge[k].w+dist[q];
if(!inq[edge[k].to])
{
inq[edge[k].to]++;
Q1.push(edge[k].to);
}
}
k=edge[k].next;
}
} LL res=0;
for(int i=1; i<=n; i++)
{
if(dist[i]==INF)
return -1;
// cout<<"dist[i]=="<<dist[i]<<endl;
res+=value[i]*dist[i];
}
return res;
} int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d",&n,&m);
memset(head, -1, sizeof(head));
memset(value, 0, sizeof(value));
idx=0;
for(int i=1; i<=n; i++)
scanf("%d",&value[i]);
int u,v,w;
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
Addedge(v,u,w);
}
if(n==0||m==0)
{
printf("0\n");
continue;
}
LL res=SPFA(1);
if(res==-1)
printf("No Answer\n");
else
printf("%lld\n",res);
}
return 0;
}
LD1-B(最短路径-SPFA)的更多相关文章
- [最短路径SPFA] POJ 1847 Tram
Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- 最短路径 SPFA P3371 【模板】单源最短路径(弱化版)
P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复 ...
- 最短路径——SPFA算法
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...
- 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...
- luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...
- 最短路径----SPFA算法
求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...
- 枚举最短路径+SPFA
Harry Potter and the Final Battle Submit Status Description The final battle is coming. Now Harry Po ...
- 【SPFA与Dijkstra的对比】CDOJ 1961 咸鱼睡觉觉【差分约束-负权最短路径SPFA】
差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[ ...
随机推荐
- QueryPerformanceFrequency使用方法--Windows高精度定时计数
在多核心或多处理器的计算机上.特别是在支持CPU频率动态调整的计算机上,windows系统下的QueryPerformanceFrequency()获取HPET(假设存在)的频率,而QueryPerf ...
- Error parsing XML: not well-formed (invalid token) 报错+R文件消失解决的方法
xml报错: 这个xml文件上右键source ->format 注意:res下的文件名称不能大写 R文件消失: 在攻克了其它问题的情况下(或者其它问题还没解决先凝视掉) 手动删除gen pro ...
- linux两台server远程copy文件
1.将远程机器的文件copy到本地 scp -r root@10.10.15.25:/bea /gg 将远程的/bea copy到/gg以下 -r Recursively copy ent ...
- android抓包工具
下载 http://gdown.baidu.com/data/wisegame/2158469c63492e89/Tcpzhuabao_2.apk
- [转] javascript对数组的操作
javascript数组操作大全,数组方法总汇 1. shift:删除原数组第一项,并返回删除元素的值:如果数组为空则返回undefined var a = [1,2,3,4,5]; var b = ...
- POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 ...
- vijos P1375 大整数(高精不熟的一定要做!)
/* 我尼玛这题不想说啥了 亏了高精写的熟..... 加减乘除max都写了 高精二分 */ #include<iostream> #include<cstdio> #inclu ...
- HTML之Data URL(转)
Data URL给了我们一种很巧妙的将图片“嵌入”到HTML中的方法.跟传统的用img标记将服务器上的图片引用到页面中的方式不一样,在Data URL协议中,图片被转换成base64编码的字符串形式, ...
- 【javascript模式】Chapter2: 基本 技巧
1 尽量少用全局变量,最好一个应用程式只有一个全局变量 隐含全局变量(不使用var声明)与明确定义的全局变量区别: (1)使用var创建的全局变量(在函数外部声明)不能用delete删除 (2) ...
- 开始学习<p>标签,添加段落
如果想在网页上显示文章,这时就需要<p>标签了,把文章的段落放到<p>标签中. 语法: <p>段落文本</p> 注意一段文字一个<p>标签, ...