聚类算法,无监督学习的范畴,没有明确的类别信息。

  给定n个训练样本{x1,x2,x3,...,xn}

  kmeans算法过程描述如下所示:

  1.创建k个点作为起始质心点,c1,c2,...,ck
  2.重复以下过程直到收敛

    遍历所有样本xi
      遍历所有质心cj
        记录质心与样本间的距离
      将样本分配到距离其最近的质心
    对每一个类,计算所有样本的均值并将其作为新的质心

  下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

  需要注意的几点:

  k个点怎么取

  1.选择距离尽可能远的k个点

    首先随机选一个点p1作为第一个簇的质心,然后选距离这个点p1最远的点p2作为第二个簇的质心,

  再选择距离前面p1和p2最短距离的最大值的点作为第三个簇的质心。max(min(d(p1),d(p2)))

  以此类推,选k个点。

  2.选用层次聚类或者Canopy算法先进行初始聚类,利用这些类簇的中心点作为Kmeans初始类簇的质心

   要求:样本相对较小,例如数百到数千(层次聚类开销较大);K相对于样本大小较小

  k值怎么确定

  ps:每个类称为簇,则簇的直径:簇内任意两点间的最大距离,簇的半径:簇内点到簇质心的最大距离

  给定一个合适的簇指标,可以是簇平均半径、簇平均直径、或者平均质心距离的加权平均值(权重可以为簇内点的个数)

  分别取k值在1,2,4,8,16....

  基本会符合下图,当簇个数低于真实个数时,簇指标会随簇个数的增长快速下降,当簇个数高于真实个数时,簇指标会趋于平稳

  找到图中所示转折点,先确定k的大致范围,再通过二分查找确定k的值

  

  算法停止条件

  1.规定一个迭代次数,达到即停止

  2.目标函数收敛

  求上述目标函数的最小值

  参考:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html

K-means聚类的更多相关文章

  1. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  2. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  3. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  4. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  5. Python实现kMeans(k均值聚类)

    Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...

  6. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

  7. R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法

    基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成 ...

  8. 第十篇:K均值聚类(KMeans)

    前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...

  9. K均值聚类的失效性分析

    K均值聚类是一种应用广泛的聚类技术,特别是它不依赖于任何对数据所做的假设,比如说,给定一个数据集合及对应的类数目,就可以运用K均值方法,通过最小化均方误差,来进行聚类分析. 因此,K均值实际上是一个最 ...

  10. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

随机推荐

  1. 数据结构(块状链表):COGS 1689. [HNOI2010]Bounce 弹飞绵羊

    时间限制:1 s   内存限制:259 MB [题目描述] 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地 ...

  2. QTP自传之描述性编程

    描述性编程,即采用描述性的语言定位对象,不需要事先将对象添加到对象库中.下面,就说说如何使用描述性编程,我们将继续使用对象库编程中的网页. 使用描述性编程的两种方法 直接描述 对象("属性名 ...

  3. TabHost结合RadioButton实现主页的导航效果

    布局文件的设置,如下 <?xml version="1.0" encoding="utf-8"?> <TabHost xmlns:androi ...

  4. HDU1247 Hat’s Words(Trie的动态内存版本)

    Hat’s Words Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  5. MySQL 创建库

    CREATE DATABASE IF NOT EXISTS database_name DEFAULT CHARSET utf8 COLLATE utf8_general_ci; 这种创建方式能保证数 ...

  6. [Locked] Two Sum

    Two Sum II - Input array is sorted Given an array of integers that is already sorted in ascending or ...

  7. baidu面试题

    百度:http://blog.chinaunix.net/uid-26602509-id-3306451.html http://lvwenwen.iteye.com/blog/1504379

  8. linux 编译安装apache

    1.下载apache.安装apache #wget http://apache.etoak.com//httpd/httpd-2.4.4.tar.gz #tar zxvf httpd-2.4..4.t ...

  9. mvc与mvvm

    mvc:被动型式的,也就是说,只有view有要求的时候,控制器才有反应 View     Controller       Model 可以把一个页面看作是由多个view组成 Controller控制 ...

  10. PhoneGap应用开发的那些坑爹事儿

    子曾经曰过:如果你恨一个人,让他去开发PhoneGap应用:如果你爱一个人,让他去开发PhoneGap应用. 去年这个时候我很烦恼,因为我觉得我OUT了. 起因是我买了一台Android系统的手机.当 ...