题目:

Sample Input
2 1
1 2 10
2 1
1 2 -10
3 3
1 2 4
2 3 2
3 1 5
4 5
2 3 4
4 2 5
3 4 2
3 1 0
1 2 -1
Sample Output
Infinite
Infinite
3
1

题意:

  给定一个有向图,每条边都有一个权值。每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后让所有边的权值的最小值大于零且尽量大。

分析:

  因为不同的操作互不影响,因此可以按任意顺序实施这些操作。另外,对于同一个点的多次操作可以合并,因此可以令sum(u)为作用于结点u之上的所有d之和。这样,本题的目标就是确定所有的sum(u),使得操作之后所有边权的最小值尽量大。

  “最小值最大”又让我们想到使用二分答案的方法。二分答案x之后,问题转化为是否可以让操作完毕后每条边的权值均不小于x。对于边a->b,不难发现操作完毕后它的权值为w(a,b)+sum(a)-sum(b),因此每条边a->b都可以列出一个不等式w(a,b)+sum(a)-sum(b)>=x,移项得sum(b)-sum(a)<=w(a,b)-x。这样,我们实际得到一个差分约束系统。

  差分约束系统是指一个不等式组,每个不等式形如xj-xi<=bk,这里的bk是一些事先已知的常数。这个不等式类似于最短路中的不等式d[v]<=d[u]+w(u,v),我们可以用最短路算法求解:对于约束条件xj-xi<=bk,新建一条边i->j,(根据最短路性质可以证明在图无负环的情况下这个不等式是成立的)权值为bk。如果图中有负权环,则差分约束系统无解。

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 510
#define Maxm 4010
#define INF 0xfffffff int n,m;
int first[Maxn],dis[Maxn],cnt[Maxn];
bool bq[Maxn],inq[Maxn]; struct node
{
int x,y,c,cc,next;
}t[Maxm];int len; int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int cc)
{
t[++len].x=x;t[len].y=y;t[len].cc=cc;
t[len].next=first[x];first[x]=len;
} queue<int > q; bool spfa(int s)
{
memset(inq,,sizeof(inq));
memset(dis,,sizeof(dis));
memset(cnt,,sizeof(cnt));
while(!q.empty()) q.pop();
dis[s]=;inq[s]=;q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();inq[x]=;
for(int i=first[x];i;i=t[i].next)
{
int y=t[i].y;
if(dis[y]>dis[x]+t[i].c)
{
dis[y]=dis[x]+t[i].c;
if(!inq[y])
{
q.push(y);
inq[y]=;
if(++cnt[y]>n+) return ;
}
}
}
}
return ;
} bool check(int x)
{
memset(bq,,sizeof(bq));
for(int i=;i<=len-n;i++) t[i].c=t[i].cc-x;
if(spfa(n+)) return ;
/*for(int i=1;i<=n+1;i++) if(!bq[i])
{
if(spfa(i)) return 0;
}*/
return ;
} void ffind(int l,int r)
{
while(l<r)
{
int mid=(l+r+)>>;
if(check(mid)) l=mid;
else r=mid-;
}
printf("%d\n",l);
} int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first,,sizeof(first));
int mx=-INF;len=;
for(int i=;i<=m;i++)
{
int x,y,cc;
scanf("%d%d%d",&x,&y,&cc);
ins(x,y,cc);
mx=mymax(cc,mx);
}
for(int i=;i<=n;i++)
{
ins(n+,i,);t[len].c=;
}
if(check(mx+)) {printf("Infinite\n");continue;}
if(!check()) {printf("No Solution\n");continue;}
ffind(,mx);
}
return ;
}

[UVA11478]

2016-04-10 15:33:20

【UVA11478】Halum (最短路解差分约束)的更多相关文章

  1. 【POJ1021】Intervals (最短路解差分约束)

    题目: Sample Input 5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1 Sample Output 6 题意: 我们选数,每个数只能选一次.给定n个条件[ai,bi]和 ...

  2. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  3. poj3169 最短路(差分约束)

    题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...

  4. poj3159 最短路(差分约束)

    题意:现在需要分糖果,有n个人,现在有些人觉得某个人的糖果数不能比自己多多少个,然后问n最多能在让所有人都满意的情况下比1多多少个. 这道题其实就是差分约束题目,根据题中给出的 a 认为 b 不能比 ...

  5. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...

  6. POJ 2983 Is the Information Reliable? 信息可靠吗 (差分约束,spfa)

    题意:有n个站排成一列,针对每个站的位置与距离关系,现有多个约束条件,约束条件分两种:(1)确定的.明确说明站a距离站b多少个单位距离.(2)不确定的.只知道a在b的左边至少1个单位距离.  根据已知 ...

  7. 【HDU3440】House Man (差分约束)

    题目: Description In Fuzhou, there is a crazy super man. He can’t fly, but he could jump from housetop ...

  8. 差分约束算法————洛谷P4878 [USACO05DEC] 布局

    题目: 不难看出题意主要是给出ml+md个格式为xi-xj<=ak的不等式,xi-xj为i,j俩头牛的距离,要我们求x1-xn的最大值. 经过上下加减我们可以将这几个不等式化成x1-xn< ...

  9. 牛客Wannafly9E 组一组 差分约束

    正解:差分约束 解题报告: 传送门! 首先肯定要想到把他们分开来考虑,就是说,把数二进制拆分掉,这样就可以分开考虑了嘛 然后考虑设f[i]:前i个数中的1的个数 然后就可以得到一堆差分约束的式子 然后 ...

随机推荐

  1. Reactor构架模式--转载

    原文:http://cache.baiducontent.com/c?m=9f65cb4a8c8507ed4fece76310468a3b404380143c86964868d4e419ce3b464 ...

  2. OKHttp的简单使用

    一方面,最近关于OKHttp的讨论甚嚣尘上,另一方面,我最近也更新了android6.0,发现在6.0中HttpClient不能使用了,于是决定抽时间也看一下OKHttp,总结了一点东西,与大家分享. ...

  3. RedHat7配置IdM server

    IdM服务器是一个集成身份验证服务器. Figure 1.1. The IdM Server: Unifying Services Authentication: Kerberos KDC Kerbe ...

  4. opencv多平台环境搭建及使用

    windows平台: 一.安装opencv 下载地址:http://opencv.org/ 依据平台下载相应源码包 安装流程就是一个解压过程.不再赘述. 解压完,效果图: 源码树结构参看http:// ...

  5. MYSQL 基础操作

    1.MySQL基础操作 一:MySQL基础操作 1:MySQL表复制 复制表结构 + 复制表数据 create table t3 like t1; --创建一个和t1一样的表,用like(表结构也一样 ...

  6. webrtc学习———记录一

    最近导师让研究一下webrtc,希望将来用到我们的ICT2系统中. 但是从来没有过做web的基础,无论前端还是后端,html.js全都从头学起.html还好说,没有太过复杂的东西. js就有点难度了, ...

  7. 基于url拦截实现权限控制

    用户表,角色表,用户角色表,权限表,权限角色表 1.用户通过认证(可以是验证用户名,密码等) 2.登陆拦截器,为公开的url放行, 登陆时,将用户信息放入session中,获得用户的权限集合,将集合放 ...

  8. java中的递归方法

    一.含义 递归算法是一种直接或间接地调用自身的算法.在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解. 二.例子 99乘法表的例子 1:普通实现99乘法表太 ...

  9. java-成员变量的属性与成员函数的覆盖

    java中在多态的实现是通过类的继承或者接口的实现来完成的. 在类继承或者接口实现过程中就会涉及到成员属性以及成员函数的重写,需要注意的是,成员函数的重写是直接覆盖父类的(继承中),但是成员变量重写是 ...

  10. 朋友的礼物(英雄会,csdn,高校俱乐部)信封问题,匹配模型

    前言: 首先这是一题解,但是重点最代码之后,有耐心的可以直接从代码后看. 上题目:n个人,每个人都有一件礼物想送给他人,他们决定把礼物混在一起,然后每个人随机拿走一件,问恰好有m个人拿到的礼物恰好是自 ...