http://www.cnblogs.com/spork/archive/2009/12/29/1634766.html

来自原小站,曾经迷糊过的东西,表上来,希望对正在迷糊或即将迷糊的人有帮助。

  谈到系统的可伸缩性,Scale-up(纵向扩展)和Scale-out(横向扩展)是两个常见的术语,对于初学者来说,很容易搞迷糊这两个概念,这里总结了一些把概念解释的比较清楚的内容。

  首先来段Wikipedia的,讲的很透彻了。

      Scale vertically (scale up)
   To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.
   Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running.
  Scale horizontally (scale out)
   To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.
   As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.
   The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.

Scale vertically (scale up)  

  To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.

  Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running. 

  Scale horizontally (scale out)

  To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.

  As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.

  The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.

------------------------------华丽的分割线---------------------------------------

  英语不好?没关系,给你准备了一份中文的,来自这里,他用养鱼来做了个形象的比喻。

  当你只有六七条鱼的时候, 一个小型鱼缸就够了;可是过一段时间新生了三十多条小鱼,这个小缸显然不够大了。

  如果用Scale-up解决方案,那么你就需要去买一个大缸,把所有沙啊、水草啊、布景啊、加热棒、温度计都从小缸里拿出来,重新布置到大缸。这个工程可不简单哦,不是十分钟八分钟能搞得定的,尤其水草,纠在一起很难分开(不过这 跟迁移数据的工程复杂度比起来实在是毛毛雨啦,不值一提)。

  那么现在换个思路,用Scale-out方案,就相当于是你在这个小缸旁边接了一个同样的小缸,两个缸联通。鱼可以自动分散到两个缸,你也就省掉了上面提到的那一系列挪沙、水草、布景等的折腾了。

[转] Scale-up 和Scale-out的区别的更多相关文章

  1. 声学感知刻度(mel scale、Bark scale、ERB)与声学特征提取(MFCC、BFCC、GFCC)

    梅尔刻度 梅尔刻度(Mel scale)是一种由听众判断不同频率 音高(pitch)彼此相等的感知刻度,表示人耳对等距音高(pitch)变化的感知.mel 刻度和正常频率(Hz)之间的参考点是将1 k ...

  2. 什么是Scale Up和Scale Out?

    导读:Scale Out(也就是Scale horizontally)横向扩展,向外扩展 Scale Up(也就是Scale vertically)纵向扩展,向上扩展 无论是Scale Out,Sca ...

  3. 云存储的未来:Scale Up还是Scale Out?

      云存储的几十年发展历程,其计算架构模型,也从Scale Up走向Scale Out.但是展望未来数字世界的海量需求,目前流行的模型还能够持续满足吗?本文通过对云存储历史的回顾,及对Scale Up ...

  4. 什么是scale up和scale out

    Scale Out(也就是Scale horizontally)横向扩展,向外扩展Scale Up(也就是Scale vertically)纵向扩展,向上扩展无论是Scale Out,Scale Up ...

  5. 一种新的隐藏-显示模式诞生——css3的scale(0)到scale(1)

    .dropdown-menu {  background: rgba(255, 255, 255, 0.98) none repeat scroll 0 0;  box-shadow: 0 1px 2 ...

  6. FCC---Use the CSS Transform scale Property to Scale an Element on Hover

    The transform property has a variety of functions that let you scale, move, rotate, skew, etc., your ...

  7. 数据库sharding(scale up to scale out)

    sharding是将一个大数据库按照一定规则拆分成多个小数据库的一门技术. 当我们的应用数据量越来越多,访问量越来越大的时候,我们会作何选择?继续提升数据库服务器的性能还是采用一项技术让数据库平滑扩展 ...

  8. UIScreen的 bound、frame、scale属性

    CGRect bound = [[UIScreen mainScreen] bounds];  // 返回的是带有状态栏的Rect   CGRect frame = [[UIScreen mainSc ...

  9. iOS - UIScreen的 bound、frame、scale属性

    A UIScreen object contains the bounding rectangle of the device’s entire screen. When setting up you ...

  10. NGUI Tween动画Scale与Transform冲突

    NGUI中我们要同时完成Scale与Transform的效果,会发现动画并不是同我们想的那样运行的. 原因就是Tween Scale与Tween Transform的冲突调用. Tween Scale ...

随机推荐

  1. hadoop 2.0--YARN

    从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache H ...

  2. Xcode6插件开发

    工欲善其事必先利其器,Xcode是我们做iOS Dev必须掌握的一款开发工具. Xcode本身也是一门Cocoa程序,与其来说它是一个Cocoa程序,是不是意味着,我们可以去动态去让它做某件事,或者监 ...

  3. 过滤器(Filter)

    day21 过滤器概述 1 什么是过滤器 过滤器JavaWeb三大组件之一,它与Servlet很相似!不它过滤器是用来拦截请求的,而不是处理请求的. 当用户请求某个Servlet时,会先执行部署在这个 ...

  4. 外包如何安排人手-b

    前几天跟一位做人事的朋友聊天,说起软件行业人员问题.朋友的公司是做软件外包的.一个APP项目基本配置6-7个人,每个Android.ios.后台都各配2人以上,但是项目各种超期.各种无法交付.各种客户 ...

  5. TMS IntraWeb 5.4.1.1 for XE6 (适配Intraweb14.0.32)

    文件夹内含有我自己已经编译好的bpl,仅供大家学习使用,请支持正版!!导入ParaInstalarXE6.groupproj后,逐个编译安装即可. 链接:http://pan.baidu.com/s/ ...

  6. JDK源码阅读(三) Collection<T>接口,Iterable<T>接口

    package java.util; public interface Collection<E> extends Iterable<E> { //返回该集合中元素的数量 in ...

  7. 简谈HashMap、HashTable的区别

    简单的说HashMap是HashTable的轻量级实现,即非线程安全的实现,他们的主要区别概述为: HashMap HashTable (1)允许键和值为null  不允许键或值为null (2)不是 ...

  8. app内购提示,您已购买此商品,但未下载

    出现这样的问题,是支付没有finish造成的,一般在支付过程中断网了,下次再购买同一商品的时候就会出现这样的问题, 解决办法,在点击购买的时候判断支付队列中是否有为finish的商品,若有,则进行处理 ...

  9. 安卓天天练练(四)drawable state 属性

    今天又作茧自缚(item 写成 itme ╮(╯▽╰)╭ elipse还自动闭合了标签,来回查查查看报错,为啥点击无效呢!) 真欠抽,怪不得上班地铁上被个sb踢到脚趾头(目测有可能是同家公司的..同站 ...

  10. kafka java示例

    http://www.open-open.com/lib/view/open1407942131801.html http://www.open-open.com/lib/view/open14079 ...