题面

题目描述

Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.

Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.

When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow

Gathering.

Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.

1 3 4 5

@--1--@--3--@--3--@[2]

[1] |

2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:

Gather ----- Inconvenience ------

Location B1 B2 B3 B4 B5 Total

1 0 3 0 0 14 17

2 3 0 0 0 16 19

3 1 2 0 0 12 15

4 4 5 0 0 6 15

5 7 8 0 0 0 15

If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:

Barn 1 0 -- no travel time there!

Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 -- no cows there!

Barn 4 0 -- no cows there!

Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.

The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。

每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。

在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。

输入格式:

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single integer: C_i

Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i

输出格式:

Line 1: The minimum inconvenience possible

输入样例#1:

5

1

1

0

0

2

1 3 1

2 3 2

3 4 3

4 5 3

输出样例#1:

15

题解

考虑如果依次枚举每一个点作为集会的地点

使用DFS进行计算

然后再依次比较

时间复杂度O(n^2)

但是n的范围太大,显然会超时。

那么,我们应当如何优化?

先看看样例

通过一次O(n)的计算,很容易得出来

如果选择1号节点,答案就是17

既然O(n^2)的计算无法在时间内求解

那么是否可以递推出来呢?

显然是可以的。

观察如果已经知道1号节点所需的时间

那么,我们可以做如下假设:

① 所有的牛首先到达了1号节点

② 3号节点以及他子树上的节点都需要退回1->3的路径的长度

③ 除了3号节点以及他子树上的节点都需要前进1->3的路径的长度

通过上面的三条东西,我们就可以从任意一个父节点推出子节点的时间

所以,又是一遍O(n)的计算就可以推出最终的答案

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 200100
#define ll long long
inline ll read()
{
register ll x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=x*10+ch-48;ch=getchar();}
return x*t;
} ll dis[MAX],C[MAX],Q[MAX],f[MAX],Sum,Ans=1000000000000000000; struct Line
{
ll v,next,w;
}e[MAX]; ll h[MAX],cnt=1,N; inline void Add(ll u,ll v,ll w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
//使用两遍DFS
//第一遍以任意点为根节点计算一遍
//dis[i]表示以i为根的子树到根的距离之和
ll DFS(ll u,ll ff)
{
ll tot=0;
for(ll i=h[u];i;i=e[i].next)
{
ll v=e[i].v;
if(v!=ff)
{
ll s=DFS(v,u);//子树上牛的数量
dis[u]+=dis[v]+e[i].w*s;//统计
tot+=s;//牛的个数
}
}
return Q[u]=tot+C[u];
}
//第二遍计算偏移后的值
//先可以假设走到当前节点的父节点
//再让当前自己点所有牛退回来,父节点的所有牛走过去即可
void DFS2(ll u,ll ff)
{
for(ll i=h[u];i;i=e[i].next)
{
ll v=e[i].v;
if(v!=ff)
{
ll ss=e[i].w;
f[v]=f[u]-Q[v]*ss+(Sum-Q[v])*ss;
DFS2(v,u);
}
}
} int main()
{
N=read();
for(ll i=1;i<=N;++i)
C[i]=read();
for(ll i=1;i<=N;++i)
Sum+=C[i];//统计牛的总数
for(ll i=1;i<N;++i)
{
ll u=read(),v=read(),w=read();
Add(u,v,w);
Add(v,u,w);
} DFS(1,1);//求出以1为聚集处的结果 DFS2(1,1);//求出其他的偏移值 for(ll i=1;i<=N;++i)
Ans=min(Ans,f[i]); cout<<Ans+dis[1]<<endl; return 0;
}

【洛谷2986】【USACO10MAR】伟大的奶牛聚集的更多相关文章

  1. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  2. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  3. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...

  5. [USACO10MAR]伟大的奶牛聚集

    [USACO10MAR]伟大的奶牛聚集 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会. 每个奶牛居住在 N(1<=N& ...

  6. 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)

    P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...

  7. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  8. 【洛谷1345】 [USACO5.4]奶牛的电信(最小割)

    传送门 洛谷 Solution emmm,直接对于每一个点拆点就好了. 然后边连Inf,点连1,跑最小割就是答案. 代码实现 #include<bits/stdc++.h> using n ...

  9. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. ftp服务器的简单配置使用

    yum install -y vsftpd systemctl start vsftpd   cd /var/ftp/pub/   mkdir 111   touch weifeng.txt     ...

  2. dedecms在任意页面调用任意栏目文章

    dedecms在任意页面调用任意栏目文章,我们用arclist标签即可实现.如果是调用多个栏目文章可以给typeid多个值. 我们以调用ID为1和ID为30的两个栏目下5篇文章为例: {dede:ar ...

  3. windows下apache服务器开启压缩和网页缓存

    找到配置文件:http.conf apache开启压缩 一.开启配置,去除下面代码前面的#号LoadModule deflate_module modules/mod_deflate.soLoadMo ...

  4. [翻译]编写高性能 .NET 代码 第二章:垃圾回收 基本操作

    返回目录 基本操作 垃圾回收的算法细节还在不断完善中,性能还会有进一步的提升.下文介绍的内容在不同的.NET版本里会略有不同,但大方向是不会有变动的. 在.net进程里会管理2个类型的内存堆:托管和非 ...

  5. HopSpot虚拟机中的Mark word的作用

    1.其为对象头保存对象的hashcode 2.保存GC分代年龄,锁状态标志,线程持有的锁,偏向线程的ID偏向时间戳.

  6. PHP中单引号与双引号的区别

    在PHP中,字符串的定义可以使用英文单引号' ',也可以使用英文双引号" ". 一般情况下两者是通用的.但双引号内部变量会解析,单引号则不解析. PHP允许我们在双引号串中直接包含 ...

  7. FineUIPro控件库深度解析

    FineUIPro控件库 FineUIPro是一套基于jQuery的专业ASP.NET控件库,始于2008年的开源版FineUI控件库. 当年为了提升项目的开发效率,降低代码复杂度,减少对CSS和Ja ...

  8. 从零开始学习前端JAVASCRIPT — 12、JavaScript面向对象编程

    一.构造函数的使用 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  9. Docker(一):Docker入门教程

    如今Docker的使用已经非常普遍,特别在一线互联网公司.使用Docker技术可以帮助企业快速水平扩展服务,从而到达弹性部署业务的能力.在云服务概念兴起之后,Docker的使用场景和范围进一步发展,如 ...

  10. [JCIP笔记] (一)多线程的起源

    在很久很久以前,那时的计算机还没有操作系统这种东西,所以只能有一个程序,从头到尾地跑.于是这个程序要负责使用所有的资源,还得响应外部请求.想想这个程序得多复杂啊--为了做成一件事,可能要先把内存啊.I ...