整理自Andrew Ng的machine learning课程week 4.

目录:

  • 为什么要用神经网络
  • 神经网络的模型表示 1
  • 神经网络的模型表示 2
  • 实例1
  • 实例2
  • 多分类问题

1、为什么要用神经网络

当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$

假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话:

$g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2+\theta_4x_1^2x_2+........)$

大约有5000($\frac{n^2}{2}$)个特征,也就是说O(n2),那么当多项式的次数为3次时,结果更加的大,O(n3)

这样多的特征带来的后果是:1.过拟合的可能性增大     2.计算的耗费很大

举个更加极端的例子,在图像问题中,每一个像素就相当于一个特征,仅对于一个50*50(已经是非常小的图片了)的图像而言,如果是灰度图像,就有2500个特征了,RGB图像则有7500个特征,对于每个特征还有255个取值;

对于这样的一个图像而言,如果用二次特征的话,就有大概3百万个特征了,如果这时候还用逻辑回归的话,计算的耗费就相当的大了

这个时候我们就需要用到neural network了。

2、神经网络的模型表示1

神经网络的基本结构如下图所示:

$x_0, x_1,x_2,x_3$是输入单元,$x_0$又被称为bias unit,你可以把bias unit都设置为1;

$\theta$是权重(或者直接说参数),连接输入和输出的权重参数;

$h_\theta(x)$是输出的结果;

对于以下的网络结构,我们有以下定义和计算公式:

$a_i^{(j)}$:在第j层的第i个单元的activation(就是这个单元的值),中间层我们称之为hidden layers

$s_j$:第j层的单元数目

$\Theta^{(j)}$:权重矩阵,控制了从第j层到第j+1层的映射关系,$\Theta^{(j)}$的维度为$s_{j+1}*(s_j+1)$

对于$a^{(2)}$的计算公式为:

$a_1^{(2)}=g(\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3})$

$a_2^{(2)}=g(\theta_{20}^{(1)}x_0+\theta_{21}^{(1)}x_1+\theta_{22}^{(1)}x_2+\theta_{23}^{(1)}x_3)$

$a_3^{(2)}=g(\theta_{30}^{(1)}x_0+\theta_{31}^{(1)}x_1+\theta_{32}^{(1)}x_2+\theta_{33}^{(1)}x_3)$

那么同理,

$h_\Theta(x)=a_1^{(3)}=g(\theta_{10}^{(2)}a_0^{(2)}+\theta_{11}^{(2)}a_1^{(2)}+\theta_{12}^{(2)}a_2^{(2)}+\theta_{13}^{(2)}a_3^{(2)})$

3、神经网络模型表示2

forward propagation: vectorized implementation

对以上的公式的向量化表示:

$z_1^{(2)}=\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3}$

$a_1^{(2)}=g(z_1^{(2)})$

写成向量即为:

$ a^{(1)}=x= \begin{bmatrix} x_0 \\  x_1 \\ x_2 \\ x_3  \end{bmatrix} $          $ z^{(2)}=\begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_1 \\ z^{(2)}_1 \end{bmatrix} $          $\Theta^{(1)}= \begin{bmatrix} \theta^{(1)}_{10} & \theta^{(1)}_{11} & \theta^{(1)}_{12} & \theta^{(1)}_{13} \\ \theta^{(1)}_{20} & \theta^{(1)}_{21} & \theta^{(1)}_{22} & \theta^{(1)}_{23} \\ \theta^{(1)}_{30} & \theta^{(1)}_{31} & \theta^{(1)}_{32} & \theta^{(1)}_{33} \\ \end{bmatrix}$

因此:

$z^{(2)}=\Theta^{(1)}a^{(1)}$

$a^{(2)}=g(z^{(2)})$

加上$a^{(2)}_0=1$:

$z^{(3)}=\Theta^{(2)}a^{(2)}$

$a^{(3)}=h_\Theta(x)=g(z^{(3)})$

以上即为向量化的表达方式。

对于每个$a^{(j)}$都会学习到不同的特征

4、实例1

先来看一个分类问题,XOR/XNOR,对于$x_1,x_2 \in {0,1}$,当x1和x2不同(0,1或者1,0)时,y为1,相同时y为0;y=x1 xnor n2

对于一个简单的分类问题 AND:

可以用如下的神经网络结构得到正确的分类结果

同样的,对于OR,我们可以设计出以下的网络,也可以得到正确的结果

5、实例2

接着上面的例子,对于 NOT,以下网络结构可以进行分类:

我们回到示例中最初提到的问题:XNOR

当我们组合上述简单例子(AND、OR、NOT)时,就可以得到解决XNOR问题的正确的网络结构:

6、多分类问题

在neural network中的多分类问题的解决,也是用的one vs all的思想,在二分类问题中,我们是输出不是0就是1,而在多分类问题中,输出的结果是一个one hot向量,$h_\Theta(x) \in R^k$,k代表类别数目

比如说对于一个4类问题,输出可能为:

类别1:$\begin{bmatrix}  0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, 类别2:$\begin{bmatrix}  0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, 类别3:$\begin{bmatrix}  0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ , 等等

你不可以把$h_\Theta(x)$输出为1,2,3,4

machine learning 之 Neural Network 1的更多相关文章

  1. Python -- machine learning, neural network -- PyBrain 机器学习 神经网络

    I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...

  2. machine learning 之 Neural Network 2

    整理自Andrew Ng的machine learning 课程 week5. 目录: Neural network and classification Cost function Backprop ...

  3. machine learning 之 Neural Network 3

    整理自Andrew Ng的machine learning课程week6. 目录: Advice for applying machine learning (Decide what to do ne ...

  4. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

  5. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  6. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  8. 《MATLAB Deep Learning:With Machine Learning,Neural Networks and Artificial Intelligence》选记

    一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as ...

  9. Deep learning与Neural Network

    深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...

随机推荐

  1. JSON(四)——异步请求中前后端使用Json格式的数据进行交互

    json格式的数据广泛应用于异步请求中前后端的数据交互,本文主要介绍几种使用场景和使用方法. 一,json格式字符串 <input type="button" id=&quo ...

  2. SpringBoot使用log4j

    1.添加log4j相关依赖 在pom.xml文件中添加相关依赖: <!--配置log4j--> <dependency> <groupId>org.springfr ...

  3. nginx配置反向代理详细教程(windows版)

    内容属于原创,如果需要转载,还请注明地址:http://www.cnblogs.com/j-star/p/8785334.html Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(I ...

  4. jenkins创建pipeline

    新建任务的时候,有两个流水线相关的任务类型,如下图.其中:流水线更加针对单主干模式的开发,在主干目录下放一个Jenkinsfile文件,其中该文件保存了从SCM拉代码.构建.测试.发布等等流程. 而M ...

  5. SpringBoot2.x开发案例之整合Quartz任务管理系统

    基于spring-boot 2.x + quartz 的CRUD任务管理系统,适用于中小项目. 基于spring-boot +quartz 的CRUD任务管理系统: https://gitee.com ...

  6. UI前端开发都是做什么的以及html、css、php、js等究竟是神马关系

    第一个问题: 1.UI,是视觉方面的呈现.一个网页首先由UI完成整体设计,然后把每一个模块切图,例如组件.logo.版块等.常用工具:PS,AI,DW. 2.前端,是将UI的设计代码化,因为计算机无法 ...

  7. MySQL操作与修改表

    插入数据(insert) insert语句的3个主要组成部分: 所要插入数据的表的名称: 表终需要使用的列的名称: 需要插入到列的值. 数字型主键生成机制 数字型主键生成机制,除了随机选择数字外,还可 ...

  8. 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对

    相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...

  9. 技巧:如何提升Oracle用户密码的安全性

    环境:Oracle 11.2.0.4 客户需求:主要背景是数据库中有很多业务用户名,且由于部分用户缺乏安全意识,甚至直接将自己的密码设置为和用户名一样,目前客户期望密码设置不要过于简单,最起码别和用户 ...

  10. JS实现手机访问pc网址自动跳转到wap网站

    之前写pc端直接跳转wap端一直是后端java写的,跟js一样都是根据navigator.userAgent来判断设备是电脑还是手机的,我知道这种前端也可已完成的功能,只是后台比较强势,本人本着以和为 ...