[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:
解法一:
class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};
下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:
解法二:
class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};
我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:
第一天两次交易: 第一天一次交易:
local: 0 0 0 local: 0 0 0
global: 0 0 0 global: 0 0 0
第二天两次交易: 第二天一次交易:
local: 0 0 2 local: 0 2 2
global: 0 0 2 global: 0 2 2
第三天两次交易: 第三天一次交易:
local: 0 2 2 local: 0 1 2
global: 0 2 2 global: 0 2 2
第四天两次交易: 第四天一次交易:
local: 0 1 9 local: 0 8 9
global: 0 2 9 global: 0 8 9
在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:
1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干
2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票
3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖
但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:
local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff
global[i][j] = max(local[i][j], global[i - 1][j])
类似题目:
Best Time to Buy and Sell Stock with Cooldown
Best Time to Buy and Sell Stock IV
Best Time to Buy and Sell Stock II
Best Time to Buy and Sell Stock
参考资料:
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章
- [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
- LeetCode: Best Time to Buy and Sell Stock III 解题报告
Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...
- [LeetCode] Best Time to Buy and Sell Stock III
将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...
- LeetCode: Best Time to Buy and Sell Stock III [123]
[称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...
- [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机
Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...
- [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间
Say you have an array for which the ith element is the price of a given stock on day i. If you were ...
随机推荐
- 你真的会玩SQL吗?三范式、数据完整性
你真的会玩SQL吗?系列目录 你真的会玩SQL吗?之逻辑查询处理阶段 你真的会玩SQL吗?和平大使 内连接.外连接 你真的会玩SQL吗?三范式.数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节 ...
- 小萝贝控机大师工具推荐(一款在PC就能控制手机界面的工具)
在一次写博客的过程中,要截取手机app上的几张图片,然后粘贴到博客里面去,不了解这个工具的时候,我就从手机上截图(使用其他的截图app或者使用手机自己的截图功能),然后再传送到电脑上,然后再放到博文中 ...
- 基于轻量型Web服务器Raspkate的RESTful API的实现
在上一篇文章中,我们已经了解了Raspkate这一轻量型Web服务器,今天,我们再一起了解下如何基于Raspkate实现简单的RESTful API. 模块 首先让我们了解一下"模块&quo ...
- C#多线程--线程池(ThreadPool)
先引入一下线程池的概念: 百度百科:线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程.每个线程都使用默认的堆栈大小,以默认的优先级运行, ...
- Pyc 是什么东东
在众多语言中, 最终我们可以将语言分为编译性语言和解释性语言两种 编译性语言,也就是机器语言, 是机器能读的懂的语言, 像C语言, 其实高级语言都是基于C语言的基础之上运行的 解释性语言, 不同于编译 ...
- java多线程解读二(内存篇)
线程的内存结构图 一.主内存与工作内存 1.Java内存模型的主要目标是定义程序中各个变量的访问规则.此处的变量与Java编程时所说的变量不一样,指包括了实例字段.静态字段和构成数组对象的元素,但是不 ...
- 在centos 服务器上安装phalcon框架 undefined symbol: php_pdo_get_dbh_ce
去git 下载对应版本的框架 命令行: sudo yum install php-devel pcre-devel gcc make 然后使用GIT clone到服务器上,然后 git clone g ...
- SQLServer2005+获取表结构信息
SELECT d.name TableName, a.colorder FieldNo,a.name FieldName, (case when COLUMNPROPERTY( a.id,a.name ...
- CuPlayer
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> <met ...
- Atitit 《控制论原理与概论attilax总结
Atitit <控制论原理与概论attilax总结 <控制论> 奠基之作,出自创始人维纳.虽然内容权威,但我认为带有相当强烈的个人色彩,且门槛较高,不适合入门.深入研究控制论必看书籍 ...