Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9

global:  0 2 9       global:  0 8 9

在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章

  1. [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  6. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  7. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  8. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  9. [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

随机推荐

  1. The Road To Hadoop(网盘系统的实现)

    因为毕业设计的原因,得从零开始学习hadoop.虽然接触Hadoop也有一段时间了,但是没有一个完整的时间段去学习,在公司实习的同时,只能利用零零碎碎的时间学习,今天完成了第一个版本的基于Hadoop ...

  2. 利用Python进行数据分析(13) pandas基础: 数据重塑/轴向旋转

    重塑定义     重塑指的是将数据重新排列,也叫轴向旋转. DataFrame提供了两个方法: stack: 将数据的列“旋转”为行. unstack:将数据的行“旋转”为列. 例如: 处理堆叠格式 ...

  3. 让VIM支持Python2 by update-alternatives

    前言  Ubuntu 16+中$ sudo apt install vim所安装的vim只支持Python3,但很多插件如YCM和powerline均需要Python2,那就来场"生命贵在折 ...

  4. 简单封装分页功能pageView.js

    分页是一个很简单,通用的功能.作为一个有经验的前端开发人员,有义务把代码中类似这样公共的基础性的东西抽象出来,一来是改善代码的整体质量,更重要的是为了将来做类似的功能或者类似的项目,能减少不必要的重复 ...

  5. 类型“System.Data.Linq.DataContext”在未被引用的程序集中定义。必须添加对程序集“System.Data.Linq, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”的引用。

    解决方法:添加System.Data.Linq.dll引用 http://www.cnblogs.com/m84641693/archive/2010/07/26/1785100.html http: ...

  6. 你所不知道的linq(二)

    上一篇说了from in select的本质,具体参见你所不知道的linq.本篇说下from...in... from... in... select 首先上一段代码,猜猜结果是什么? class P ...

  7. C#开发微信门户及应用(28)--微信“摇一摇·周边”功能的使用和接口的实现

    ”摇一摇周边“是微信提供的一种新的基于位置的连接方式.用户通过“摇一摇”的“周边”页卡,可以与线下商户进行互动,获得商户提供的个性化的服务.微信4月份有一个赠送摇一摇设备的活动,我们有幸获得赠送资格, ...

  8. 高性能 TCP & UDP 通信框架 HP-Socket v3.5.3

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  9. 几句话就能让你理解:this、闭包、原型链

    以下是个人对这三个老大难的总结(最近一直在学习原生JS,翻了不少书,不少文档,虽然还是新手,但我会继续坚持走我自己的路) 原型链 所有对象都是基于Object.prototype,Object.pro ...

  10. Kotlin开发语言文档(官方文档)-- 目录

    开始阅读Kotlin官方文档.先上文档目录.有些内容还未阅读,有些目录标目翻译还需琢磨琢磨.后续再将具体内容的链接逐步加上. 文档链接:https://kotlinlang.org/docs/kotl ...