Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

  1. Input: [3,3,5,0,0,3,1,4]
  2. Output: 6
  3. Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
  4.   Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

  1. Input: [1,2,3,4,5]
  2. Output: 4
  3. Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
  4.   Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
  5.   engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

  1. Input: [7,6,4,3,1]
  2. Output: 0
  3. Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

  1. class Solution {
  2. public:
  3. int maxProfit(vector<int> &prices) {
  4. if (prices.empty()) return ;
  5. int n = prices.size(), g[n][] = {}, l[n][] = {};
  6. for (int i = ; i < prices.size(); ++i) {
  7. int diff = prices[i] - prices[i - ];
  8. for (int j = ; j <= ; ++j) {
  9. l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
  10. g[i][j] = max(l[i][j], g[i - ][j]);
  11. }
  12. }
  13. return g[n - ][];
  14. }
  15. };

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

  1. class Solution {
  2. public:
  3. int maxProfit(vector<int> &prices) {
  4. if (prices.empty()) return ;
  5. int g[] = {};
  6. int l[] = {};
  7. for (int i = ; i < prices.size() - ; ++i) {
  8. int diff = prices[i + ] - prices[i];
  9. for (int j = ; j >= ; --j) {
  10. l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
  11. g[j] = max(l[j], g[j]);
  12. }
  13. }
  14. return g[];
  15. }
  16. };

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9

global:  0 2 9       global:  0 8 9

在网友@loveahnee的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvlty解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三的更多相关文章

  1. [LeetCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. [LintCode] Best Time to Buy and Sell Stock II 买股票的最佳时间之二

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  4. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  5. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  6. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  7. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  8. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  9. [LintCode] Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

随机推荐

  1. 百度EChart3初体验

    由于项目需要在首页搞一个订单数量的走势图,经过多方查找,体验,感觉ECharts不错,封装的很细,我们只需要看自己需要那种类型的图表,搞定好自己的json数据就OK.至于说如何体现出来,官网的教程很详 ...

  2. jQuery中取消后续执行的内容

    <html xmlns="http://www.w3.org/1999/xhtml"><head>    <title></title&g ...

  3. .NET Core全面扫盲贴

    标签: .NETCore Asp.NETCore 1. 前言 2. .NET Core 简介 2.1 .NET Core是什么 2.2 .NET Core的组成 2.3 .NET Core的特性 2. ...

  4. BZOJ3095 : 二元组

    \[\begin{eqnarray*}&&\sum_{i=0}^{n-1}\left(ki+b-a_i\right)^2\\&=&\sum_{i=0}^{n-1}\le ...

  5. MySQL: Table 'mysql.plugin' doesn't exist的解决

    安装解压版MySQL以后,不能启动,日志里面出现了这个错误: MySQL: Table 'mysql.plugin' doesn't exist 这是因为mysql服务启动时候找不到内置数据库&quo ...

  6. 基础总结之Activity

    一.万事开头的序 网上看见大牛们的博客写的那样精彩,各种羡慕之情溢于言表.几次冲动均想效仿牛人写些博客来记录下自己的心得体会,但均无感亦或是感觉容易被喷,相信很多菜鸟和我一样都有过这样的担忧.万事开头 ...

  7. Sublime Text 2 快捷操作

    Sublime Text 2 包含了大量快捷操作,而且还很方便修改和追加自己喜欢的快捷键. 查看快捷键的方式也很简单: 点击菜单栏:Preferences->Key Bindings –Defa ...

  8. php实现设计模式之代理模式

    <?php /* * 代理模式 * 为其他对象提供一种代理以控制对这个对象的访问. * 在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以在客户端和目标对象之间起到中介的作用 ...

  9. 兼容当前多浏览器的渐变颜色背景gradient的写法

    经常有一些时候需要使用渐变背景,使用长条图片有点太不高大上了,于是自己写了个小例子,兼容多浏览器就要为每一个浏览器写对应的CSS,太低版本的浏览器只能使用图片做背景. 下面是当前五大浏览器对gradi ...

  10. win10 安装visual studio 2015遇到的坑

    最近win7系统不知啥原因无法访问域中的网络文件,打算升级到win10体验一下.结果发现这一路有太多的坑.首先安装win10基本上算顺利,但是当进入系统后,菜单模式对于PC的鼠标来说,用起来感觉不顺手 ...