Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

 
煞笔Dp题
做两次Dp
一次算每一行的最优选择(行于行无关分开Dp即可)
二次算总的最优选择 转移时枚举每行用多少次
 
算分数的时候巧用前缀和
 
/*感觉我写Dp还是不够溜啊
总是觉得这样会冗余计算或本来就是一次操作强行算两次
但没必要管那么多

自然会统计出最优解的*/
 
秒之 刷水好欢乐
 
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,maxt=; int mark(int a,int b){
return max(a-b,b);
} int n,m,t;
int d[maxn][maxn][maxn],f[maxn][maxt];
int c[maxn][maxn];
char s[maxn][maxn]; int getC(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
c[i][j]=c[i][j-]+s[i][j]-'';
} int getD(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
for(int x=;x<j;x++)
d[i][j][k]=max(d[i][j][k],d[i][x][k-]+mark(j-x,c[i][j]-c[i][x]));
} int getF(){
for(int i=;i<=n;i++)
for(int j=;j<=t;j++)
for(int k=;k<=m&&k<=j;k++)
f[i][j]=max(f[i][j],f[i-][j-k]+d[i][m][k]);
} int main(){
scanf("%d%d%d",&n,&m,&t);
for(int i=;i<=n;i++)
scanf("%s",s[i]+); getC();
getD();
getF();
printf("%d\n",f[n][t]);
return ;
}
 
 

【Dp】Bzoj1296 [SCOI2009] 粉刷匠的更多相关文章

  1. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  2. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  3. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  5. BZOJ1296 [SCOI2009]粉刷匠 【dp】

    题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...

  6. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  7. bzoj1296: [SCOI2009]粉刷匠

    dp. 用到俩次dp,用1和0代表俩种颜色,首先对于每块木板我们进行一次dp,g[i][j]代表前j个格子刷i次最多能涂到几个格子. 则 g[i][j]=max(g[i-1][k],max(cnt[j ...

  8. bzoj1296 [SCOI2009]粉刷匠——背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1296 对于不同木板之间,最终统计答案时做一个分组背包即可: 而要进行分组背包,就需要知道每个 ...

  9. [bzoj1296][SCOI2009]粉刷匠(泛化背包)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...

随机推荐

  1. AngularJS中service,factory,provider的区别

    一.service引导 刚开始学习Angular的时候,经常被误解和被初学者问到的组件是 service(), factory(), 和 provide()这几个方法之间的差别.This is whe ...

  2. log4j日志的配置

    在项目开发中,记录错误日志方便调试.便于发现系统运行过程中的错误.便于后期分析, 在java中,记录日志有很多种方式,比如说log4j log4j需要导入的包: commons-loggin.jar ...

  3. Event 对象

    哪个鼠标按钮被点击? <html> <head> <script type="text/javascript"> function whichB ...

  4. 基于RecyclerView的瀑布流实现

    fragment的布局: <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" xm ...

  5. Ocelot中文文档-Qos服务质量

    目前Ocelot支持一种QoS功能. 如果您希望在请求向下游服务时使用断路,则可以在ReRoute中进行设置. 这个功能使用了一个名为Polly的.NET库,这个库很棒,在这里可以找到它. 添加如下配 ...

  6. java之Spring(AOP)-Annotation实现添加切面

    我们已经知道之前的切面添加方式(动态代理),是定义了一个实现了InvocationHandler接口的Handlerservice类,然后 在这个类内部写好切面逻辑,包括切面放置的位置,很显然下面的这 ...

  7. vue.js中的全局组件和局部组件

    组件(Component)是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素, Vue.js 的编译器为它添加特殊功能. 组件的使用有三 ...

  8. 利用nginx解决cookie跨域

    一.写在前面 最近需要把阿里云上的四台服务器的项目迁移到客户提供的新的项目中,原来的四台服务器中用到了一级域名和二级域名.比如aaa.abc.com 和bbb.abc.com 和ccc.abc.com ...

  9. 初学JSP

    一. 基本了解     JSP是应用最广泛的表现层技术,它和Servlet是Java EE的两个基本成员.JSP和Servlet本质是一样的,因为JSP最终编译成ServLet才能运行. 1.1 we ...

  10. 构建具有用户身份认证的 Ionic 应用

    序言:本文主要介绍了使用 Ionic 和 Cordova 开发混合应用时如何添加用户身份认证.教程简易,对于 Ionic 入门学习有一定帮助.因为文章是去年发表,所以教程内关于 Okta 的一些使用步 ...