python实现线性回归
参考:《机器学习实战》- Machine Learning in Action
一、 必备的包
一般而言,这几个包是比较常见的:
• matplotlib,用于绘图
• numpy,数组处理库
• pandas,强大的数据分析库
• sklearn,用于线性回归的库
• scipy, 提供很多有用的科学函数
我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程。
二、 线性回归
为了尽量简单,所以用以下一元方程式为例子:
典型的例子是房价预测,假设我们有以下数据集:
我们需要通过训练这些数据得到一个线性模型,以便来预测大小为700平方英尺的房价是多少。
详细代码如下:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model def get_data(file_name):
data = pd.read_csv(file_name)
X_parameter = []
Y_parameter = []
for single_square_feet ,single_price_value in zip(data['square_feet'],data['price']):
X_parameter.append([float(single_square_feet)])
Y_parameter.append(float(single_price_value))
return X_parameter,Y_parameter def linear_model_main(X_parameters,Y_parameters,predict_value):
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters)
predict_outcome = regr.predict(predict_value)
predictions = {}
predictions['intercept'] = regr.intercept_
predictions['coefficient'] = regr.coef_
predictions['predicted_value'] = predict_outcome return predictions def show_linear_line(X_parameters,Y_parameters):
regr = linear_model.LinearRegression()
regr.fit(X_parameters, Y_parameters)
plt.scatter(X_parameters,Y_parameters,color='blue')
plt.plot(X_parameters,regr.predict(X_parameters),color='red',linewidth=4)
#plt.xticks(())
#plt.yticks(())
plt.show() if __name__ == "__main__": X,Y = get_data('E:/machine_learning/LR/input_data.csv')
#show_linear_line(X,Y)
predictvalue = 700
result = linear_model_main(X,Y,predictvalue)
print "Intercept value " , result['intercept']
print "coefficient" , result['coefficient']
print "Predicted value: ",result['predicted_value']
结果如图:
前两个为公式里的参数。
三、 多项式回归
简单的线性模型误差难免高,于是引入多项式回归模型,方程式如下:
这次我们用scipy.stats中的norm来生成满足高斯分布的数据,直接贴代码:
# encoding:utf-8
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression, SGDClassifier
from sklearn.preprocessing import PolynomialFeatures, StandardScaler x = np.arange(0, 1, 0.002)
y = norm.rvs(0, size=500, scale=0.1) #高斯分布数据
y = y + x**2 plt.scatter(x, y, s=5)
y_test = []
y_test = np.array(y_test) #clf = LinearRegression(fit_intercept=False)
clf = Pipeline([('poly', PolynomialFeatures(degree=100)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis]) plt.plot(x, y_test, linewidth=2)
plt.grid() #显示网格
plt.show()
结果如下:
这里取的最高次为100
参考博客:http://python.jobbole.com/81215/
python实现线性回归的更多相关文章
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- python求线性回归斜率
一. 先说我对这个题目的理解 直线的x,y方程是这样的:y = kx+b, k就是斜率. 求线性回归斜率, 就是说 有这么一组(x, y)的对应值——样本.如果有四组,就说样本量是4.根据这些样本,做 ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- python模拟线性回归的点
构造符合线性回归的数据点 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点 ...
- python机器学习---线性回归案例和KNN机器学习案例
散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Serie ...
- python实现线性回归之简单回归
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: class Regression(o ...
- Python机器学习/LinearRegression(线性回归模型)(附源码)
LinearRegression(线性回归) 2019-02-20 20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...
- 机器学习之线性回归(纯python实现)][转]
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...
- 【机器学习】线性回归python实现
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...
随机推荐
- Android5.0以上的项目都会有的按钮点击特效--水波纹
<?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...
- Luogu 3375 【模板】KMP字符串匹配(KMP算法)
Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...
- 【BZOJ3680】吊打XXX(模拟退火)
[BZOJ3680]吊打XXX(模拟退火) 题面 BZOJ 题解 模拟退火... 就是模拟退火 然后这题有毒 各种调参数之后终于\(AC\)了.. 这种题就是玄学呀... 温度要调大 最后跑完还要向四 ...
- [SCOI2008]奖励关
题面在这里 题意 不好描述.....大家还是看luogu上的吧(资磁洛谷!) sol \(n<=15\)的良心数据肯定是状压啦 只是设状态的时候有点头疼 首先思考我们在无法预知之后宝物的情况下如 ...
- [HNOI2015]开店
如果没有年龄区间 画图发现ans=\(\sum_{i=1}^n dis_i + n * dis_u - 2 * \sum_{i=1}^{n} dis_{lca(i, u)}\) 对\(\sum_{i= ...
- Spring入门看这一篇就够了
前言 前面已经学习了Struts2和Hibernate框架了.接下来学习的是Spring框架...本博文主要是引入Spring框架... Spring介绍 Spring诞生: 创建Spring的目的就 ...
- VHDL和verilog应该先学哪个?
网上有太多的VHDL和verilog比较的文章,基本上说的都是VHDL和verilog之间可以实现同一级别的描述,包括仿真级.寄存器传输级.电路级,所以可以认为两者是等同级别的语言.很多时候会了其中一 ...
- URL中“#”
2010年9月,twitter改版.一个显著变化,就是URL加入了"#!"符号.比如,改版前的用户主页网址为http://twitter.com/username改版后,就变成了h ...
- 使用mescroll来实现移动端页面上拉刷新, 下拉加载更多功能
* mescroll请参考官方文档 1. 使用mescroll实现下拉滑动的效果: (仅仅效果, 有的页面不需要刷新数据, 只要你能下拉就行) 代码如下: var mescroll = new MeS ...
- Eclipse设置新建jsp文件默认模板
没有需求就没有进步,遇到问题:现在有大量的html模板页面,但是这些模板是不能和后台进行数据交互的,所以要把他们通通变成jsp页面(59个html文件),还有就是html文件转换成jsp文件的时候,前 ...